
AFRL-RX-TY-TR-2009-4515

STORING AND PREDICTING DYNAMIC
ATTRIBUTES IN A WORLD MODEL
KNOWLEDGE STORE

Daniel A. Kent

University of Florida
Mechanical and Aerospace Engineering
231 MAE-A
Gainesville, FL 32611

May 2009

Interim Report for 15 March 2005 – 1 December 2006

DISTRIBUTION STATEMENT A: Approved for public release;
distribution unlimited.

AIRBASE TECHNOLOGIES DIVISION
MATERIALS AND MANUFACTURING DIRECTORATE

AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND

139 BARNES DRIVE, SUITE 2
TYNDALL AIR FORCE BASE, FL 32403-5323

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory, Materials and
Manufacturing Directorate, Airbase Technologies Division, Public Affairs and is available to the general
public, including foreign nationals. Copies may be obtained from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

REPORT NUMBER AFRL-RX-TY-TR-2009-4515 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

___//SIGNATURE//________________________ ___//SIGNATURE//________________________
WALTER M. WALTZ JEREMY R. GILBERTSON, Major, USAF
Work Unit Manager Chief, Force Protection Branch

___//SIGNATURE//________________________
ALBERT N. RHODES, PhD
Acting Chief, Airbase Technologies Division

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

1-MAY-2007 Dissertation 15-MAR-2005 -- 01-DEC-2006

Storing and Predicting Dynamic Attributes in a World Model Knowledge
Store

FA4819-05-D-0011-0001

99999F

GOVT

F0

QF503008 (Q240FA6G)

Kent, Daniel A.

University of Florida
Mechanical and Aerospace Engineering
231 MAE-A
Gainesville, FL 32611

Air Force Research Laboratory
Materials and Manufacturing Directorate
Airbase Technologies Division
139 Barnes Drive, Suite 2
Tyndall Air Force Base, FL 32403-5323

AFRL/RXQF

AFRL-RX-TY-TR-2009-4515

Distribution Statement A: Approved for public release; distribution unlimited.

Ref AFRL/RXQ Public Affairs Case #09-077. Document contains color images.

The world is an ever-changing, dynamic environment. If robots and other intelligent systems are to find ways to
cope with and reason about the world adequately, they must be capable of understanding these dynamic features.
This dissertation examines the need for a centralized knowledge store capable of storing information that is both
spatial and temporal in nature. The interface of a new and unique architecture to handle the exchange of dynamic
information and questions about the future state of that information is presented. A novel algorithm, called the
Statistics-Based Nth Order Polynomial Predictor (SNOPP), is also developed which allows state prediction of
almost any time-variant data.

University of Florida, Statistics-Based Nth Order Polynomial Predictor (SNOPP), robotics, JAUS, algorithm, CIMAR, Dynamic
World Model architecture, Common Spatial Database Management Systems (DBMS), NaviGATOR

U U U UU 191

Walter M. Waltz

Reset

1

STORING AND PREDICTING DYNAMIC ATTRIBUTES IN A WORLD MODEL
KNOWLEDGE STORE

By

DANIEL ADAM KENT

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2007

2

Copywright 2007

by

Daniel Adam Kent

3

To my parents, Iris & Bill.

For believing in me when I didn’t even believe in myself.

“All our dreams can come true… if we have the courage to pursue them.”

Walt Disney

4

ACKNOWLEDGMENTS

First I would like to thank my family for their unending support of every endeavor I’ve

ever dreamt up. A long time ago I was told to always just do as well as I could; look where it got

me today. I would like to extend unending thanks to my Mom, Dad, Brandi, Uncle Steve and

especially my hero, Grandpa.

I would also like to sincerely thank my advisor and friend, Dr. Carl Crane, for his

incredible support of me and my research. From Gainesville, FL to Barstow, CA, he has always

found a way to make my journey more enjoyable. I would also like to thank Dave Armstrong for

his endless days of support for me and everything done at CIMAR. Through an Intelligent

Ground Vehicle Competition and two DARPA Grand Challenges, I learned that Dave may not

always care about aesthetics, but when he does, I’m sure my phone will ring. I would also like to

thank the other members of my graduate committee, Dr. Antonio Arroyo, Dr. Warren Dixon, Dr.

Eric Schwartz and Dr. Jeff Wit. Their support, critiques and many insights were very helpful to

my research.

CIMAR’s autonomous ground vehicle work would not be possible without the support of

the robotics research group at the Air Force Research Labs at Tyndall Air Force Base, Florida.

Special thanks to Walt Waltz, Al Nease and everyone at AFRL for their support of CIMAR.

I would be amiss if I didn’t thank the support of the members of the JAUS Working

Group, especially Carl Evans and the World Modeling Task Group, for their support of my

research. Their many ideas, comments and questions have been invaluable to my research

endeavors. I would also like to thank the members of the Experimentation Task Group for the

valuable experiences of the many experiments I’ve been able to participate in over the years.

Lastly, but beyond least, I would like to extend a thank you to the entire CIMAR family,

past and present. They have made this journey all the more enjoyable. We may have gotten lost

5

in the desert along the way, run into a few trees and hit more than our fair share of walls, but we

did it together. I would like to especially thank Tom Galluzzo and Bob Touchton for their daily

support of my work throughout five long years. I would also like to specifically thank Roberto

Montane for everything he’s done. Since day one, he’s been there for whatever I needed and

whenever I needed it. I could not have finished any of this without his help.

6

TABLE OF CONTENTS

 page

ACKNOWLEDGMENTS ...4

LIST OF TABLES ...9

LIST OF FIGURES ...11

ABSTRACT ...14

CHAPTER

1 INTRODUCTION ..16

Motivation and Problem Statement ..16

Proposed Solution ...17

Research Environment ..18

2 BACKGROUND AND LITERATURE REVIEW ..22

Dynamic Environment Concerns ..22

Localization ...23

Motion Planning ..24

Decision Making and Behavior Control ..24

Motion Prediction and Modeling ..26

Database Technologies ...28

Spatial Database Technologies ..29

Moving Objects Databases ..29

JAUS and the World Model Message Set ..31

3 THEORETICAL APPROACH ..38

Spatiotemporal World Model Architecture ..38

Request Object Id Block Message ...39

Assign Object Id Block Message ..40

Create Object(s) Message ..40

Confirm Creation Message ..41

Modify Object(s) Message ..41

Confirm Modification Message ...42

Delete Object(s) Message ..42

Confirm Deletion Message ..43

Query Object(s) Message ..43

Report Object(s) Message ...44

Query Object(s) Future State Message ..45

Report Object(s) Future State Message ...45

Query Geospatial Bounds Message ...46

7

Report Geospatial Bounds Message ..46

Query Temporal Bounds Message ..47

Report Temporal Bounds Message ...47

The Statistics-Based Nth Order Polynomial Predictor ..48

4 IMPLEMENTATION DETAILS ...55

JAUS World Model Vector Knowledge Store Message Set ..55

Database Selection and Design ...57

Generic Predictor Interface ...59

Polynomial Predictor Implementation ..60

Dynamic World Model Vector Knowledge Store ..62

5 TESTING AND RESULTS ..72

Laser Tracking Smart Sensor ..72

Test Procedure and Plans ..74

Test Scenario 1: Tracked Object Using Polynomial Predictor from Stationary
Platform..75

Test Scenario 2: Tracked Object Using Polynomial Predictor from Moving
Platform..75

Test Scenario 3: Tracked Object Using Linear Predictor from Moving Platform75

Test Scenario 4: Velocity Attribute Using Polynomial Predictor76

Test Scenario 5: Heading Attribute Using Polynomial Predictor76

Test Results ...76

Test Scenario 1 Results ..76

Test Scenario 2 Results ..77

Test Scenario 3 Results ..78

Test Scenario 4 Results ..80

Test Scenario 5 Results ..80

Testing Summary ..81

6 FUTURE WORK AND CONCLUSIONS ...121

Future Work ..121

Conclusion ..124

APPENDIX

A JAUS WORLD MODEL MESSAGE SET ..126

JAUS Vector Object ...127

Code F021h: Set Vector Knowledge Store Feature Class Metadata127

Code F023h: Terminate Vector Knowledge Store Data Transfer ..127

Code F120h: Request Vector Knowledge Store Object ID Block128

Code F121h: Create Vector Knowledge Store Object(s) ...128

Code F122h: Modify Vector Knowledge Store Object(s) ..128

Code F123h: Delete Vector Knowledge Store Object(s) ...129

8

Code F131h: Query Vector Knowledge Store Feature Class Metadata129

Code F130h: Query Vector Knowledge Store Object(s) ..129

Code F132h: Query Vector Knowledge Store Geospatial Bounds129

Code F133h: Query Vector Knowledge Store Temporal Bounds ..130

Code F134h: Query Vector Knowledge Store Object Future State130

Code F320h: Assign Vector Knowledge Store Object ID Block ...130

Code F321h: Report Vector Knowledge Store Object(s) Creation130

Code F322h: Report Vector Knowledge Store Object(s) Modification131

Code F323h: Report Vector Knowledge Store Object(s) Deletion131

Code F330h: Report Vector Knowledge Store Objects ..131

Code F331h: Report Vector Knowledge Store Feature Class Metadata132

Code F332h: Report Vector Knowledge Store Geospatial Bounds132

Code F333h: Report Vector Knowledge Store Temporal Bounds132

Code F334h: Report Vector Knowledge Store Object(s) Future State132

Code F424h: Report Vector Knowledge Store Data Transfer Termination133

B SAMPLE CODE EXCERPTS ..151

JAUS Vector Object ...151

Generic Predictor ..152

Generic Predictor Structure ...152

Generic Predictor ToBuffer Method ...153

Polynomial Predictor ToBuffer Method ..153

Process JAUS Messages ...154

Create Objects Message ..154

Modify Object Message ..156

Query Future State Message ..164

Prediction Algorithm Solver Functions ..171

Linear Predictor ...171

Polynomial Predictor ...172

C NUMERIC EXAMPLE ..179

LIST OF REFERENCES ...184

BIOGRAPHICAL SKETCH ...188

9

LIST OF TABLES

Table page

2-1 Common Spatial Database Management Systems (DBMS) [39-47]37

4-1 JAUS WMVKS Message Set ...68

4-2 Object table data fields, PostgreSQL type and description. ...68

4-3 Feature Class table data fields, PostgreSQL types, and description.69

4-4 Polynomial Predictor configuration parameters ..69

5-1 Scenario 1 Test Plan...84

5-2 Scenario 2 Test Plan...85

5-3 Scenario 3 Test Plan...86

5-4 Scenario 4 Test Plan...86

5-5 Scenario 5 Test Plan...87

5-6 Error analysis of test scenario 2 ...88

5-7 Error analysis of test scenario 3 ...88

5-8 Error analysis of test scenario 4 ...89

5-9 Error analysis of test scenario 5 ...89

A-1 JAUS Vector Object Mapping ...134

A-2 Code F021h: Set Vector Knowledge Store Feature Class Metadata141

A-3 Code F023h: Request Vector Knowledge Store Object ID Block141

A-4 Code F120h: Create Vector Knowledge Store Object(s) ...141

A-5 Code F122h: Modify Vector Knowledge Store Object(s) ...142

A-6 Code F123h: Delete Vector Knowledge Store Object(s) ...142

A-7 Code F130h: Query Vector Knowledge Store Object(s) ...143

A-8 Code F131h: Query Vector Knowledge Store Feature Class Metadata145

A-9 Code F132h: Query Vector Knowledge Store Geospatial Bounds145

10

A-10 Code F133h: Query Vector Knowledge Store Temporal Bounds145

A-11 Code F134h: Query Vector Knowledge Store Object(s) Future State146

A-12 Code F320h: Assign Vector Knowledge Store Object ID Block147

A-13 Code F321h: Report Vector Knowledge Store Object(s) Creation147

A-14 Code F322h: Report Vector Knowledge Store Object(s) Modification147

A-15 Code F323h: Report Vector Knowledge Store Object(s) Deletion148

A-16 Code F330h: Report Vector Knowledge Store Object(s) ..148

A-17 Code F331h: Report Vector Knowledge Store Object(s) ..149

A-18 Code F332h: Report Vector Knowledge Store Geospatial Bounds149

A-19 Code F333h: Report Vector Knowledge Store Temporal Bounds150

A-20 Code F334h: Report Vector Knowledge Store Object(s) Future State150

C-1 Dataset used in numeric example ..182

C-2 Statistical Values from numeric example ..183

11

LIST OF FIGURES

Figure page

1-1 The NaviGATOR ...20

1-2 CIMAR JAUS Libraries ..21

2-1 Illustration of the 4D/RCS architecture to include World Modeling34

2-2 System architecture for decision making in driver assistance system34

2-3 MENSA architecture for robot self awareness ..35

2-4 Spatial operators Touches, Intersect and Within. ..35

2-5 JAUS System Topology ...36

3-1 Overview of the input and output messages associated with the Spatiotemporal
World Model Architecture. ..53

3-2 Window Size and Window Count ..54

4-1 Entity-Relationship Diagram of WMVKS Database ...70

4-2 World Model Vector Knowledge Store Implementation Diagram.71

5-1 Laser tracking algorithm ..82

5-2 Laser tracking algorithm ..82

5-3 The TailGator using the tracking algorithm to follow a lawn tractor.83

5-4 Laser Tracking Smart Sensor output..83

5-5 Laser Tracking Smart Sensor setup for collection of test data ..84

5-6 Easting vs. Northing Plot for Test Scenario 1. ...90

5-7 Easting and Northing vs. Time Plot for Test Scenario 1. ..91

5-8 Easting vs. Time Plot with Prediction Values for Test Scenario 1.92

5-9 Northing vs. Time with Prediction Values for Test Scenario 1. ..93

5-10 Easting vs. Northing with Prediction Values for Test Scenario 1.94

5-11 Easting vs. Northing for Test Scenario 2. ..95

12

5-12 Easting and Northing vs. Time plot for Test Scenario 2..96

5-13 Easting vs. Time Plot for Test Scenario 2 ..97

5-14 Easting vs. Time with prediction values for test scenario 2. Close up of time period
44-64 seconds...98

5-15 Easting vs. Time with prediction values for test scenario 2. Close up of time period
120-140 seconds...99

5-16 Easting vs. Time with prediction values for test scenario 2. Close up of time period
168-188 seconds...100

5-17 Northing vs. Time with prediction values for Test Scenario 2.101

5-18 Northing vs. Time with prediction values for Test Scenario 2. Close up of time
period 30-90 seconds. ..102

5-19 Northing vs. Time with prediction values for Test Scenario 2. Close up of time
period 125-155 seconds. ..103

5-22 Easting vs. Time with prediction values for test scenario 3 ..106

5-23 Easting vs. Time with prediction values for test scenario 3. Close up of time period
44-64 seconds...107

5-24 Easting vs. Time with prediction values for test scenario 3. Close up of time period
120-140 seconds...108

5-25 Easting vs. Time with prediction values for test scenario 3. Close up of time period
168-188 seconds...109

5-26 Northing vs. Time with predicted values for test scenario 3 ...110

5-27 Northing vs. Time with predicted values for test scenario 3. Close up of time period
32-95 seconds...111

5-28 Northing vs. Time with predicted values for test scenario 3. Close up of time period
125-155 seconds...112

5-30 Northing Error vs. Time for test scenario 3. ..114

5-31 Velocity vs. Time plot for test scenario 4. ...115

5-32 Velocity vs. Time plot with prediction values for test scenario 4.116

5-33 Error vs Time for test scenario 4. ...117

5-34 Heading vs. Time plot for test scenario 5. ...118

13

5-35 Heading vs. Time plot with prediction values for test scenario 5119

5-36 Error vs. Time plot for test scenario 5. ..120

14

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

STORING AND PREDICTING DYNAMIC ATTRIBUTES IN A WORLD MODEL
KNOWLEDGE STORE

By

Daniel Adam Kent

May 2007

Chair: Carl D. Crane, III
Major: Mechanical Engineering

 The world is an ever-changing, dynamic environment. If robots and other intelligent

systems are to find ways to cope with and reason about the world adequately, they must be

capable of understanding these dynamic features. This dissertation examines the need for a

centralized knowledge store capable of storing information that is both spatial and temporal in

nature. The interface of a new and unique architecture to handle the exchange of dynamic

information and questions about the future state of that information is presented. A novel

algorithm, called the Statistics-Based Nth Order Polynomial Predictor (SNOPP), is also

developed which allows state prediction of almost any time-variant data.

Each of these contributions is demonstrated through the use of a reference implementation.

The author’s reference implementation is done using the Joint Architecture for Unmanned

Systems (JAUS), a widely accepted, open robotics architecture developed for use in defense

programs.

The architecture and predictor are tested using a real-world sensor algorithm deployed on

an autonomous vehicle at the University of Florida’s Center for Intelligent Machines and

Robotics (CIMAR). Findings and results of a these tests are given which examine the behavior of

15

the architecture and novel prediction algorithm in a variety of scenarios involving different time-

variant data types.

The Dynamic World Model architecture and the SNOPP algorithm provide significant

contributions to the future of robotics. Many robotic problems, including decision making, health

monitoring and path planning, stand to benefit from better understanding of the dynamic nature

of both the robot and its environment. This dissertation provides a framework in which many of

these and other problems may be addressed and summarily solved by future robotic engineers.

16

CHAPTER 1
INTRODUCTION

The world of mobile, intelligent robotics is expanding rapidly. As the shape, size, function

and capabilities of these systems change, so does the complexity. One of the more complex

functions to be addressed in recent years is that of modeling and understanding more fully the

environment in which the robot operates. This dissertation documents the author’s work in that

area, including background literature material, theoretical details and research results from a

reference implementation of the system developed. The focus of the author’s work is on

modeling dynamic information and predicting the future state of that information.

Two primary contributions are put forth in this document. First, a framework in which a

large variety of problems can be addressed and solved is presented, both theoretically and in

detail. Second, in the effort to implement and test that framework, a novel algorithm named the

Statistics-Based Nth Order Polynomial Predictor (SNOPP) is developed with which dynamic

attribute prediction is possible; the results of which are presented and discussed.

Motivation and Problem Statement

As robots move out of the lab and into the real world they are forced more and more often

to deal with the constraints of that world. One of these constraints which have not historically

been dealt with is that the nature of the real world is to exhibit many dynamic characteristics.

Historically, most mobile robot systems have assumed the world to be relatively static and

constant. If a dynamic object was present, it would be treated as a static object with respect to

any planning or behavioral efforts.

In more recent work, development has begun of systems which address dynamic elements

of the world. Particular effort has been paid to the problem of planning motion within an

environment which comprises a combination of static and dynamic elements. Research has also

17

been conducted in using prediction and estimation techniques in the area of autonomous

behavior generation and mission planning.

However, a weakness of each of these approaches is that the data is segregated in such a

way that the dynamic information can only be used to accomplish a specific task. The author’s

work was focused on developing a framework within which any of these and many other tasks

can be completed both separately and cooperatively by an autonomous system.

Proposed Solution

To accomplish this task, the author developed a knowledge store capable of storing and

querying dynamic information. The knowledge store is responsible for the storage, evaluation

and prediction of the future state for any defined dynamic information. This framework supports

a variety of possible modeling or prediction algorithms with which a particular item can be

modeled. To accomplish this, the sensing or reasoning portion of the robot which seeks to store

the information will specify the methodology which the knowledge store should use. The

following is an overview of the steps involved in the creation and use of a series of dynamic

information. For the sake of this example one should assume the dynamic information is the

position of some moving object.

 A sensing element on the robot determines the current position of some moving object.
How this information is determined is not significant to the knowledge store’s operation.

 The sensing element creates within the knowledge store the observed object and designates
it as “dynamic.” It also designates the prediction/estimation algorithm (of the ones

possible) which the knowledge store should use in modeling the new object.
 As new position information becomes available, the sensing element updates the

knowledge store with the latest information.
 As planning, decision making, or other sensing elements seek to complete their specialized

goals, they query the knowledge store for the current or future position of the object. The
knowledge store uses the designated estimation algorithm to produce future position
estimates.

 The sense and planning elements continue to update and use the information until the
object is no longer sensed or of concern to any planning element.

18

It was beyond the scope of the work presented herein to address evaluation within the

knowledge store of the correct selection or appropriateness of the estimation algorithm applied.

Instead it is assumed that the sensing element which has identified the information of interest

knows the best algorithm which should be applied. For this work, the prediction algorithms

available in the knowledge store were defined a priori and agreed upon by the sensor and

knowledge store developers.

Research Environment

The research documented herein was done at the Center for Intelligent Machines and

Robotics (CIMAR) at the University of Florida. CIMAR has been conducting research in

autonomous vehicles and robotics for over 15 years and has seen a large amount of success as

competitors in the Defense Advanced Research Projects Agency (DARPA) Grand Challenge in

both 2004 and 2005 (Figure 1-1 is the NaviGATOR, CIMAR’s 2005 entry in the DARPA Grand

Challenge). Much of this work is directly related to CIMAR’s involvement and support of the

robotic activities of the Air Force Research Lab (Tyndall Air Force Base, Panama City, FL).

CIMAR has also actively been involved with the Joint Architecture for Unmanned Systems

(JAUS) Working Group during the time of author’s work. This architecture has provided a solid

and reliable foundation on which new ideas and concepts can quickly be implemented and tested

in the field.

The NaviGATOR platform is now in use as the primary autonomous test bed at CIMAR.

It’s a robust and proven platform which includes a variety of sensor systems. It also provides

room for ample computing hardware nodes which allow for the rapid development and

deployment of new technologies. The system is completely JAUS based and supports a number

of essential JAUS components such as the Global Position Sensor and the Velocity State Sensor

which are critical to this research (see [1] for more details on these components and JAUS in

19

general). The NaviGATOR also supports several pre-installed LADAR systems which were used

in support of this research. The modularity of the JAUS architecture allows researchers at

CIMAR to add and remove non-critical components from the system at will.

CIMAR also has recently developed a vast library of software to support its recent JAUS

activities both within the working group’s activities and independent research. This software

library, written in C, decreases the development time of reliable and efficient JAUS components.

The work done in this research made use of these libraries to evaluate a reference

implementation. Figure 1-2 shows a dependency diagram of the CIMAR JAUS implementation

used in this research.

20

Figure 1-1 The NaviGATOR, CIMAR’s entry in the 2005 DARPA Grand Challenge.

21

Figure 1-2 CIMAR JAUS Libraries

22

CHAPTER 2
BACKGROUND AND LITERATURE REVIEW

Work done in this dissertation has laid the foundation for work which can be done in many

new and exciting areas within the realm of autonomous and unmanned systems. The Dynamic

Environment Concerns section outlines some of the fields in which dynamic objects and

attributes are of interest to robotic algorithms. The Motion Prediction and Modeling section

provides an overview of some of the many predictive algorithms in use by robotic systems.

Lastly, the Database Technologies sections aims to address the methodologies by which this

dynamic and spatial information may be stored and made available to a variety of modules

simultaneously. A significant contribution of the author’s work is that it forms a foundation for

future work within the Joint Architecture for Unmanned Systems (JAUS), a standardized

robotics architecture. The JAUS and the World Modeling Message Set section examines the

structure of the architecture and the current set of world modeling functionality available in

JAUS.

Dynamic Environment Concerns

Mobile robots have been slowly moving out of research labs and into the real world since

the days of Shakey [2]. In recent years, many of the traditional problems which faced so-called

field robotics have been solved with increasing reliability. These include many of the actions

along the “sense-plan-act” cycle that most robotic systems demonstrate. However, most of this

success has been seen only in the realm of static environments. The real world, and the world

researchers ultimately want their robots to operate in, is dynamic. The real world is abundant of

full of dynamic parameters and attributes with which robots need to understand and cope. For

this reason, in order to sufficiently operate in this real world, the “sense” and “plan” segments of

the cycle must be able to reason about and handle these dynamic parameters.

23

The following are three major areas of interest in which the incorporation of dynamic

objects and predictive estimation theories have been applied. In each, the dynamic knowledge

has shown an improvement in the system’s ability to address its individual concern.

Localization

A primary challenge of any autonomous or semi-autonomous robot is to determine its

location within the world. In the realm of outdoor robotics, this is often done through the use of

some form of global positioning system (GPS) combined with an inertial navigation system

(INS). However, GPS typically does not work for autonomous robots deployed in indoor

environments. A popular accepted approach to the problem of locating a robot within its

environment is that of Simultaneous Localization and Mapping (SLAM) which was first outlined

in [3]. Since then SLAM has been extensively used in a variety of environments – both 2D and

3D. The primary goal of a SLAM algorithm is to provide an estimate of the robot’s position

through feature extraction and mapping. Most of this work is based on probabilistic methods

which determine a maximum likelihood for the vehicle’s position and orientation.

However, much of the research done has operated under the assumption that the robot’s

environment is static [4]. In [4] is it suggested that if the dynamic objects can be filtered out, the

results of the SLAM algorithm will be better. It is also pointed out that while the SLAM

algorithms are interested in removing the dynamic obstacles, the detection and tracking of

moving objects (DATMO) algorithms are especially interested in exactly the data that is to be

filtered. Therefore SLAM with DATMO is presented with favorable results [4].

Other researchers have worked on various other methods to improve SLAM results

through careful consideration of dynamic objects. The work has often been applied to problems

dealing with the tracking of people [5, 6]. A thorough overview of many of these approaches is

presented in [7]. Many of these approaches make use of various probabilistic tracking and

24

estimation techniques to intelligently estimate which sensor reading should be filtered when

considering dynamic objects.

Motion Planning

Planning the future state of an autonomous agent is the essence of the mobile robot

problem. While the future state can consist of a number of things, many times the focus on a

mobile robot is to plan its behavior, or path, within the environment. In the case of a static or

presumed static environment, this problem has to some extent been solved [8]. The solutions to

these problems most often align themselves along two fronts, those that find an entire path

solution before starting motion, and those that react only to the current world state. So called

deliberative and reactive motion planners each have associated strengths and weaknesses (the

likes of which are outside the scope of this discussion), however most do not treat dynamic

objects in some prescribed fashion. Other work in the area of motion planning has focused on

iterative techniques such as [9], however these too do not take into account the fundamental

nature of dynamic objects. That is predicting and compensating for not only the position or

velocity, but the estimated position or velocity of the object at some future point in time.

The most recent work being done in motion planning is beginning to address this three

dimensional problem; that is X, Y and time. Initial work in this area concentrated on treating

objects as having constant velocity [10]. Later work is beginning to build beyond the constant

velocity assumption and addressing so-called Non-Linear Velocity Objects (NLVO) [11]. These

approaches and others extend many of the deliberative and iterative planning techniques

developed for static problems to allow compensation for moving objects [12-14].

Decision Making and Behavior Control

Motion planning is a significant part of the autonomous mobile robot’s job. However,

higher level decision making and behavior generation services also face the challenges of a

25

dynamic and changing environment. Some robotic architectures, notably 4D/RCS [15], dictate

the inclusion of prediction and simulation capabilities at each layer of the architecture to

facilitate future state estimation. Figure 2-1 illustrates the 4D/RCS architecture and the way

prediction and simulation capabilities are layered.

This 4D/RCS architecture has seen use in a number of different autonomous systems. The

PRIDE (PRediction in Dynamic Environments) architecture is based on the 4D/RCS scheme and

has been developed specifically to address on-road autonomous driving [16]. PRIDE makes use

of a multi-resolution, hierarchical architecture to incorporate different prediction methodologies

at different levels of the framework. Results from simulation experiments using PRIDE have

shown that different predictive routines can be combined to successfully plan at varying time

horizons for situation assessment tasks [16, 17].

Similar on-road work has also been done with predictive behavior generation in the field of

driver assistance [18]. The work done therein concentrates on an architecture whereby the

motivations, goals, plans and probable paths of surrounding vehicles are used to generate

predicted situations. Situations are given levels of probability of occurring and all possible

situations are fused for decision making. This work also makes use of a database or knowledge

store as the fundamental storage and distribution of dynamic data to other modules within the

architecture. Figure 2-2 shows the architecture in use by [18] and [19] for intelligent driver assist

problems.

While estimations and predictions of future states or events are of significant importance to

decisions about the actions of other mobile agents, it is also applicable to the study of the robot

itself. MENSA (Mission Effectiveness and Safety Assessment) is an architecture designed to

handle primarily health monitoring and contingency resolution [20]. MENSA aids a robot’s

26

ability to reason about itself and arrive at decisions based on its current state, predicted states and

mission goals. MENSA is comprised of four modules – sensor monitoring, mission assessment,

fault diagnosis, and capability assessment. Figure 2-3 provides a graphical view of the

architecture. Central to these modules is a shared knowledge store. In the MENSA architecture,

predicted sensor values are performed in the sensor monitoring module.

Motion Prediction and Modeling

There exists a multitude of prediction and modeling algorithms in use for both robotic and

non-robotic systems. The following is a survey of various tracking and estimation techniques

presented in the literature which have been applied to robots. Many of these approaches rely on

some a priori knowledge of either the environment or the object being tracked, however some do

not.

In [21] a constant velocity model is used to estimate the target’s motion in a tracking

problem. The constant velocity model uses a short history of the target’s motion and extrapolates

velocity. To improve the performance of the system, the uncertainty in the direction of the

velocity is modeled as a Gaussian distribution. The heading estimate is further improved by

incorporating known world information (gaps) into the estimator. The work has shown that the

use of velocity estimation compared to similar work without consideration of the dynamics has

improved the performance of the tracking algorithm.

In [22] the problem of motion estimation is considered in a fixed environment. The

problem is broken into two stages, a learning phase and an estimation phase. In the learning

stage, data about the trajectories of real agents moving about the environment is captured. This

represents the training data set. The training data is clustered, yielding a series of possible

trajectories in the environment. The second phase is the motion estimation phase. In the motion

estimation phase, the likelihood that some observed, partial trajectory is part of one of the

27

trajectories previously learned are evaluated. The estimated motion is then the trained trajectory

which has the maximum likelihood. This particular approach depends heavily on the fact that

certain paths through a particular environment might be preferred over others. It also embeds an

assumption that the environmental constraints which influence these preferred paths tend to

remain constant.

In [23] the problem of motion prediction is applied to the RoboCup problem (where a team

of robots is challenged with playing soccer against an opposing team of robots). One problem

presented in particular is modeling the motion of the soccer ball. In order to predict the behavior

of the ball two different models are used. When the ball is rolling freely a neural network is used

to predict its motion. When the ball is not rolling freely its motion is estimated through the use of

a collision model between it and the robots. The combination of these models was shown to have

better results for the prediction of the ball’s motion than previous work done using a Kalman

filter.

Prediction of the ball for RoboCup has also been studied in [24]. Here a grey prediction

algorithm is used. The grey predictor has the advantage of needing to know none of the internal

structure or characteristics of the system being observed. Therefore it is able to model and

predict the trajectory of the ball sufficiently. This work also implements a switching behavior to

the algorithm. Depending on how far the robot is from the ball, the prediction length is modified

to reflect the increased time it would take the robot to intercept the ball. Simulated results show

an improved performance in the system with the switching grey predictor.

In [25], an algorithm for the prediction of an object’s position and orientation is presented

which makes use of an autoregressive (AR) model. The complete algorithm for position and

orientation estimation is presented in separate parts, first dealing with the translational motion

28

then the rotational. The results presented show good performance of the system in estimating

motion both with varying and uniform acceleration.

The prediction work done in [26] focuses primarily on estimating the motion of other

intelligent agents. Here an “Intelligent Prediction” algorithm is developed. This approach takes

into account the dynamic and kinematic characteristics observed along with some a priori

knowledge of the agent’s goals and behaviors.

In [23] Kalman filtering techniques are presented to solve the problem of estimating the

position and orientation of moving obstacles. An advantage of the Kalman filtering approach is

that the estimator begins with the first step, whereas most other approaches require some

minimum data history to yield favorable estimates. Two Kalman filters are developed, one for

translational estimation and the other for rotational.

Work done in [27] focuses mainly on the use of predictive motion in building a motion

planner. However, it does outline a method for estimated motion based on a Polynomial Neural

Network (PNN). The PNN is seeded with the moving object’s position at the current and

previous time steps and the output is the estimated position of the object at the next time step. As

in most neural networks, the performance of the system is very dependent on a large set of

training data.

Database Technologies

An important contribution of this work is to take the storage and prediction elements of

spatial information and co-locate them into one service on the mobile platform. Current database

systems, both object-relational and relational, can be extended to support spatial and temporal

capabilities (see Table 2-1 for more details). Recent advances in spatiotemporal and moving

objects databases provide a framework for the query and storage of objects that move spatially

within the environment.

29

Spatial Database Technologies

A spatial database is a relational or object-oriented database which has been enhanced to

support spatial data and perform spatial operators on that data (for a through technical discussion

of spatial databases and their operators see [28]). Spatial data is usually divided into two primary

categories, raster and vector. The focus of the work in this research is in the storage and

interpretation of vector representations. Vector data is typically divided into one of three types:

points, lines and polygons. In general, these objects are not restricted to 2D representations and

can include a mixture of planar and non-planar data. An important aspect of spatial database is

not only the storage of spatial data types, but the ability to perform logical operations on that

data. Usually these operations include at minimum relational operations between entities such

as touches (any point of both entities are equal), intersect (entities intersect such that there is a set

of collective points shared), or within (one entity completely encapsulated within the interior of

another). Figure 2-4 describes these operators.

An important feature of most commercial spatial databases is that of spatial indexes. A

spatial index makes use of the spatial relationships among data members to improve the

performance of queries and spatial operators [28]. Table 2-1 lists several commonly available

relational and object-relational database systems and the various spatial options available for

each. Several other factors are presented in Table 2-1 including 3D data support, raster data

support, compliance with the standard outlined by the OpenGIS Consortium (OGC) in [29] and

relative system costs.

Moving Objects Databases

Recent work in DBMSs has concentrated more on the moving object problem. In a Moving

Object Database (MOD), information about geometries that change over time are stored. The

30

MOD is an extension to the spatial database and the temporal database [30]. MODs are

comprised primarily of two distinct parts, the query language and the spatio-temporal data types.

Early work on MODs could not make use of DBMS systems due to limitations on indexing

and data types. Two significant efforts in the early development of MODs sought to overcome

these limitations, namely the Databases fOr MovINg Objects (DOMINO) project [31-33] which

implements the Moving Objects Spatio-Temporal (MOST) data model [34, 35]. The MOST data

model introduced the concept of a dynamic attribute. This is an attribute whose value changes

with respect to time without being explicitly updated [34]. These efforts sought to solve many of

the fundamental DBMS questions in dealing with moving objects. To simplify the problems,

these efforts made use of a number of assumptions [30].

Several of the assumptions hinder the technology’s use in robotics. Paramount to these is

an assumption that the moving object will update the database with new information whenever

the object’s position deviates by some threshold. Based on this assumption, uncertainty in the

object’s position is based on knowing that it is at most “threshold” distance away from its last

known position. The MOST model also supports two methods to model the object’s motion, first

through the use of a motion vector. This vector can be any function with respect to time that

describes the future motion of the attribute it describes. Higher-level information can also be

used. In the case of vehicles, it is more realistic to assume that the vehicle travels along some

road network. If the possible road network is known, then the motion of the vehicle can be

constrained to that network [30].

The significant work done to date in MODs concentrates on the storage, modeling and

querying of moving objects, including work on uncertainty analysis [36]. However, little to no

work has been done to include within the MOD the ability for the database to develop it own

31

model of the attribute and reason about its future. Instead a MOD relies on a close relationship

with the moving object itself to provide that information.

JAUS and the World Model Message Set

The Joint Architecture for Unmanned Systems (JAUS) is an effort to develop an upper

level design for the various interfaces in the realm of unmanned systems. The initiative started in

1998 when the Office of the Secretary of Defense charted what was then the Joint Architecture

for Unmanned Ground Vehicles Working Group (JAUGS WG). JAUGS has since transitioned to

encompass the realm of all unmanned systems. It is the goal of the working group to develop a

framework which

 aids in procurement of robotics systems by ensuring mutual compatibility,
 encourages industry competition without fear of being locked in to proprietary solutions,
 enables developers to focus on application needs rather than basic infrastructure, and
 reduces the burden of technology transfer between programs.

JAUS defines a component-based messaging architecture which defines the data format

and message specifications for communicating between different computing nodes and

processes. It defines an architectural layout of System, Subsystem, Node and Component which

correspond, respectively, to a combination of robotic resources, a particular robot or control unit,

a computing resource and a software process. Figure 2-5 shows the JAUS topology. Various

components are defined in the JAUS Reference Architecture (RA) for well-defined robotic

software roles [1]. These include global position, velocity feedback, actuator control and

configuration management. The RA includes a definition of various data types used to

communicate between components. It also includes a set of messages which define the way in

which information is passed between components and the nature in which this communication

takes place.

32

Much work has been done in recent years to progress JAUS into emerging areas of robotic

research. One key area of interest to the JAUS Working Group (WG) has been in the area of

World Modeling. What follows is the definition of a World Model as adopted by the JAUS

standard.

The world model is the intelligent system’s best estimate of the state of the world. The

world model includes a database of knowledge about the world, plus a database
management system that stores and retrieves information. The world model also contains a
simulation capability that generates expectations and predictions. The world model
provides answers to requests about the present, past, and probable future states of the
world. The world model provides this information service to the behavior generation
system element in order to make intelligent plans and behavioral choices. It provides
information to the sensory processing system element to perform correlation, model
matching, and model-based recognition of states, objects, and events. It provides
information to the value judgment system element to compute values such as cost, benefit,
risk, uncertainty, importance, and attractiveness. The world model is kept up to date by the
sensory processing system element. [37]

As can be seen, one of the primary goals of the World Model, as defined above, is to

provide a “simulation capability.” However, work done to date within JAUS deals solely with

the query and storage of static geospatial data [38]. The work done in this dissertation focuses on

vector data representation, therefore the area of interest in the JAUS documentation is that which

deals with the World Model Vector Knowledge Store. The messages and capabilities therein

support the following capabilities:

 Create point, line or polygonal object(s). These objects can contain a number of feature
classes [38] and each feature class may contain a single feature class attribute.

 Delete an object or a group of objects in an area.
 Query for objects by region, id, feature class, attribute or any combination thereof.

This core set of query and storage functionality, along with the developed spatial data

types provided the foundation for the implementation detailed in Chapter 4. The JAUS World

Model message set also establishes a set of terminology including feature class and feature class

33

attribute which are used extensively in the author’s implementation. More details about these can

be found in [38].

While much of the basic functionality is retained, many of the existing JAUS messages

needed to be changed or extended to support the architectural requirements. The modified JAUS

message set, as used by the author, is included as Appendix A.

34

Figure 2-1 Illustration of the 4D/RCS architecture to include World Modeling in direct support

of sensing, behavior generation and value judgment activities. [15]

Figure 2-2 System architecture for decision making in driver assistance system [19]

35

Figure 2-3 MENSA architecture for robot self awareness [20]

Figure 2-4 Spatial operators Touches, Intersect and Within.

Intersect OperatorTouches Operator

Polygon & PointPolygon & Line

Polygon & Polygon

Line & Line

Line & Point

Within Operator

Polygon & Line

Line & Line

Polygon & Polygon

Polygon & Line

Line & Line

Polygon & Point

36

System

Subsystem NSubsystem 1 Subsystem 2

Node NNode 1 Node 2 Node 3

Component NComponent 1 Component 2 Component 3

Figure 2-5 JAUS System Topology

37

Table 2-1 Common Spatial Database Management Systems (DBMS) [39-47]

DBMS OS Spatial Extension

OGC

Compliance

Spatial

Index

Coordinate

System 3D Raster Cost

Oracle Linux, Windows Oracle Spatial Compliant ● ● ● ● $$$$$

 Oracle Locator Compliant ● ● ● - $$

 ArcSDE Compliant ● ● ● ● $$$

DB2 Linux, Windows DB2 Spatial
Extender Compliant ● ● - - $$

 ArcSDE Compliant ● ● ● ● $$

MS Access Windows GeoMedia - ● ● ● - $

MS SQL Server Windows SpatialWare Implementing ● ● ● - $

 GeoMedia - ● ● ● - $

 ArcSDE Compliant ● ● ● ● $$

Informix Linux, Windows Spatial Datablade Compliant ● ● ● - $$

 ArcSDE Compliant ● ● ● ● $$$

PostgreSQL Linux, Windows PostGIS Compliant ● ● ● - Open-Source

MySQL Linux, Windows Native - ● - - - Open-Source

38

CHAPTER 3
THEORETICAL APPROACH

The storage and querying of dynamic information is a challenging problem. In this chapter

the author describes two parts of the unique problem. First, the architectural requirements of a

centralized knowledge store are discussed and a solution proposed. Following that, a unique

prediction algorithm for estimating the future state of information without a priori knowledge of

the behavior of the system is described. Through the combination of the architecture described

and use of various prediction methods like the one described herein, a vast array of dynamic and

temporal knowledge store problems may be solved.

Spatiotemporal World Model Architecture

The use of knowledge stores as centralized repositories for information is not a new

concept in either computer science or robotics. There is a long tradition of knowledge stores such

as databases being used in applications ranging from financial to stock control. Also, in robotics,

common, centralized knowledge representations have been successful in a number of

robotic systems. However, few of these systems have attempted to cope with the various

demands of both spatial and temporal knowledge. Further, providing predictive behavior about

the future state of information is something only recently explored by the moving objects

database (MOD) researchers.

In developing an architecture for use on a robotic system, several constraints and concerns

are of importance. Foremost, is the flexibility of the interface. The kind of spatiotemporal data most

often encountered on an intelligent robotic platform is from some form of sensing capability. It is

then appropriate to design the interface to the knowledge store in such a way as to cater to the

capabilities of most sensing systems. Second, the architecture should scale with the scope of

the robot and its mission. From simple vacuuming robotic systems for home use to a fleet of

39

robotic platforms deployed together, the spatiotemporal knowledge store should provide a

solution that suits the needs of both. To those ends, the architecture presented here provides a

flexible yet robust interface which allows the robotic system designer to make best use of the

information available on the system. It provides capabilities to create objects, modify them,

delete them and ask questions about their past, present and future state. Each object is assigned a

unique object ID for identification purposes either by the knowledge store or the client. Objects

may have associated with them both geospatial information and attribute information. The

geospatial information describes the geometry, position and orientation of an object in the

context of the world. The attribute information can be used to hold any other significant

information about the object which may include but is not limited to color, velocity, height,

classification and/or name.

A novel feature of this architecture is the capacity for multiple estimation techniques for

object and attributes prediction. Rather than attempt to apply a single prediction technique to all

objects, the knowledge store is flexible in allowing the client to specify which technique to use.

Current work has focused on having a collection of prediction techniques defined a priori which

a knowledge store client can select from in creating or modifying objects and their attributes.

This capability extends the flexibility and scalability of the architecture by allowing particular

prediction techniques to be created and scaled to the particular application of interest; without the

need to modify or change the overall architecture and message set.

Figure 3-1 shows the various input and output messages for the architecture. Each message

and its various fields are described below in detail.

Request Object Id Block Message

 REQUEST ID

 BLOCK SIZE

40

The Request Object Id Block message is used by the knowledge store client to request a

range of object IDs which it may use. The REQUEST ID is used by the knowledge store to track

any response to the client. The BLOCK SIZE field indicated the number of object IDs the client is

requesting.
Assign Object Id Block Message

 REQUEST ID

 BLOCK SIZE

 OBJECT IDS

The Assign Object Id Block message is sent in response to a Request Object Id Block

message. This message includes the REQUEST ID of the original request. The BLOCK SIZE field

is the size of object ids allocated by the knowledge store for use by the requesting client. The

OBJECT IDS field is a list of the object ids allocated.

Create Object(s) Message

 REQUEST ID

 OBJECT COUNT

 OBJECT ID (OPTIONAL)

 OBJECT ESTIMATOR TYPE (OPTIONAL)

 OBJECT TIME STAMP (OPTIONAL)

 OBJECT GEOSPATIAL INFORMATION

 OBJECT ATTRIBUTES INFORMATION

The Create Object(s) message includes allows the client to create one or more unique

objects within the knowledge store. The REQUEST ID field is used to track the creation request

and is used in any response from the knowledge store. The OBJECT COUNT field is provided to

indicate how many objects are included in the message. Each object is constructed from set of

fields including OBJECT ID, OBJECT ESTIMATOR TYPE, OBJECT TIME STAMP, OBJECT

41

GEOSPATIAL INFORMATION and OBJECT ATTRIBUTES. The OBJECT ID field is optional. It is

provided when the client would like to create an object with a particular unique object ID. The

OBJECT ESTIMATOR TYPE field is also optional. It indicates which of the available estimation

algorithms available should be used to estimate the geospatial position of the object for queries

about its future state. If this field is not present, it is assumed that the object is to be considered

static by the knowledge store. The OBJECT TIME STAMP field is optional. This field is used to

indicate the time at which the geospatial information about the object was measured or otherwise

known to be valid. The OBJECT GEOSPATIAL INFORMATION is a collection of all the information

needed to completely define the geospatial configuration of the object. Lastly, the OBJECT

ATTRIBUTES INFORMATION is a list of attributes which are attached to the object. It is assumed

that each attribute can also be declared as either static or dynamic with an appropriate estimator

and timestamp.

Confirm Creation Message

 REQUEST ID

 CREATION RESULT

 OBJECT IDS

The Confirm Creation message is sent by the knowledge store to the client following the

receipt of a Create Object(s) message. This message includes the REQUEST ID of the original

creation. The CREATION RESULT field is used to indicate the success or failure of the creation

request. For each object in the original request, the appropriate OBJECT ID (either assigned by

the knowledge store or as requested) is included.

Modify Object(s) Message

 REQUEST ID

 OBJECT COUNT

42

 OBJECT ID

 OBJECT ESTIMATOR TYPE (OPTIONAL)

 OBJECT TIME STAMP (OPTIONAL)

 OBJECT GEOSPATIAL INFORMATION

 OBJECT ATTRIBUTES INFORMATION (OPTIONAL)

The Modify Object message is used by the knowledge store client to modify or add

information about an object in the knowledge store. The REQUEST ID is used by the knowledge

store in its response to track the original request. The OBJECT COUNT field is used to indicate the

number of objects included to be modified. The OBJECT ID field indicates which object in the

knowledge store that the client would like changed or updated. Like the Create Object(s)

message, this message includes information about the object which should be changed or

updated. The client is given the opportunity to change the OBJECT ESTIMATOR TYPE, update the

OBJECT TIME STAMP and update or replace the OBJECT GEOSPATIAL INFORMATION and OBJECT

ATTRIBUTES INFORMATION.

Confirm Modification Message

 REQUEST ID

 MODIFICATION RESULT

The Confirm Modification message is sent by the knowledge store in response to a

Modify Object message. This message includes two fields, the REQUEST ID of the original

modification message and a result. The MODIFICATION RESULT is used to indicate success or

failure of the request.

Delete Object(s) Message

 REQUEST ID

 OBJECT IDS (OPTIONAL)

 DELETION REGION (OPTIONAL)

 DELETION ATTRIBUTES (OPTIONAL)

43

The Delete Object(s) message is sent to the knowledge store from a client who wishes to

delete one or more objects from the knowledge store. The REQUEST ID is used to track the input

for any response. There are 3 ways objects can be identified for deletion. The first is to identify

the unique OBJECT ID of the object(s) to be deleted. The second method is to provide a

DELETION REGION. Here the client provides a geometric region to the knowledge store; all

objects within that region (either wholly or partly) will be deleted. The last method is to provide

a list of DELETION ATTRIBUTES. This will cause the knowledge store to remove any object which

matches all the attributes provided. These various methods can be combined to form more

complex deletion requests. Such combinations result in logical conjunctions and could allow

deletion of a particular object only if it is inside the deletion region or removal of all objects in a

region that match a particular attribute value. Through combinations of the three methods, a large

number of flexible deletion commands can be constructed.

Confirm Deletion Message

 REQUEST ID

 DELETION RESULT

 OBJECT IDS

The Confirm Deletion message is sent by the knowledge store in response to a Delete

Object(s) message. This includes the REQUEST ID field of the original deletion request for

tracking purposes. The DELETION RESULT indicates success or failure of the request. The OBJECT

IDS field is a list of the objects successfully removed from the knowledge store.

Query Object(s) Message

 REQUEST ID

 HISTORY SIZE (OPTIONAL)

44

 OBJECT IDS (OPTIONAL)

 QUERY REGION (OPTIONAL)

 QUERY ATTRIBUTES (OPTIONAL)

The Query Object(s) message is used by a client to find information about the current or

past state of one or more objects in the knowledge store. The Request Id is used to track the

query and identify the response from the knowledge store. The History Size field is optional.

This field indicates the time period of object history to be included in the response. There are three

ways objects can be identified for inclusion in the response. The first method is to explicitly

identify the object(s) through the use of their OBJECT IDS. The second method consists of

identifying a QUERY REGION. This defines a geometric region in which all objects within (either

wholly or partly) will be included in the result. Lastly, specific QUERY ATTRIBUTES can be

included. Any object which matches all the included attributes will be included in the result. Like

the Delete Object(s) message, these fields can be combined to provide more flexible queries.

Combinations are considered to be logical conjunctions. This allows queries such as a specific

object if it is inside some region or all objects with a particular attribute value.

Report Object(s) Message

 REQUEST ID

 QUERY RESULT

 HISTORY SIZE (OPTIONAL)

 OBJECT COUNT

 OBJECT ID

 OBJECT ESTIMATOR TYPE (OPTIONAL)

 OBJECT TIME STAMP (OPTIONAL)

 OBJECT GEOSPATIAL INFORMATION

 OBJECT ATTRIBUTES INFORMATION

The Report Object(s) message is sent by the knowledge store in response to a Query

Object(s) message. This message contains the results, if any, of the presented query. The

45

REQUEST ID is used to identify to the client which query this is the response to. The QUERY

RESULT field is used to indicate the success or failure of the original query. The HISTORY SIZE

field is optional and is included if the original query included it. The OBJECT COUNT field

indicates how many unique objects are included in the report. For each object included, the

OBJECT ID, OBJECT ESTIMATOR TYPE, OBJECT TIME STAMP, OBJECT GEOSPATIAL

INFORMATION and OBJECT ATTRIBUTES INFORMATION are included as appropriate. If a history of

data is included, each of the OBJECT TIME STAMP, OBJECT GEOSPATIAL INFORMATION and

OBJECT ATTRIBUTE INFORMATION will include a collection of values which constitute the history

of object.

Query Object(s) Future State Message

 REQUEST ID

 QUERY TIME

 OBJECT COUNT

 OBJECT ID

 OBJECT ATTRIBUTES (OPTIONAL)

The Query Object(s) Future State message is sent to the knowledge store by a client

which is interested in the future state of some object(s). The REQUEST ID is used by the

knowledge store to track the response. The QUERY TIME field is used to indicate the point in time

at which the future state of the object is of interest. The OBJECT COUNT field indicates how many

objects are included in the query. Each object queried includes the unique OBJECT ID and which

OBJECT ATTRIBUTES (if any) are to be included in the response.

Report Object(s) Future State Message

 REQUEST ID

 QUERY RESULT

 OBJECT COUNT

 OBJECT ID

46

 OBJECT TIME STAMP

 OBJECT GEOSPATIAL INFORMATION ESTIMATE

 OBJECT ATTRIBUTES INFORMATION ESTIMATE (OPTIONAL)

The Report Object(s) Future State message is sent by the knowledge store in response to

a Query Object(s) Future State message. The REQUEST ID field is used to indicate which

originating query this response is for. The QUERY RESULT field indicates the success or failure of

the query. OBJECT COUNT indicates how many objects are included in the report. Each object

includes its unique OBJECT ID, the OBJECT TIME STAMP for the future state, the OBJECT

GEOSPATIAL INFORMATION ESTIMATE and if requested, the OBJECT ATTRIBUTES INFORMATION

ESTIMATE.

Query Geospatial Bounds Message

 REQUEST ID

 OBJECT ATTRIBUTES INFORMATION (OPTIONAL)

The Query Geospatial Bounds message is used by the knowledge store client to ask for

the geometric bounds of the knowledge store. The REQUEST ID is used to identify the query and

its response. The OBJECT ATTRIBUTES INFORMATION field is optional. This field can be used to

specify one or more attributes to filter the results. This causes the knowledge store to return the

bounding geometry of only the objects that match the given attributes.

Report Geospatial Bounds Message

 REQUEST ID

 QUERY RESULT

 BOUNDARY GEOSPATIAL INFORMATION

 OBJECT ATTRIBUTES INFORMATION (OPTIONAL)

47

The Report Geospatial Bounds message is sent in response to a Query Geospatial

Bounds message. This message includes four fields. The REQUEST ID field is used to identify

which query this result is in response to. The QUERY RESULT indicates the success of failure of

the input query. The BOUNDARY GEOSPATIAL INFORMATION defines the geometry of the

knowledge store’s boundary based on the query. If the result has been filtered by some attributes,

the OBJECT ATTRIBUTES INFORMATION is included in the response.

Query Temporal Bounds Message

 REQUEST ID

 OBJECT ATTRIBUTES INFORMATION (OPTIONAL)

The Query Temporal Bounds message is used by the knowledge store client to ask for

the temporal bounds of the knowledge store. The REQUEST ID is used to identify the query and

its response. The OBJECT ATTRIBUTES INFORMATION field is optional. This field can be used to

specify one or more attributes to filter the results. This causes the knowledge store to return the

upper and lower timestamp of the objects that only match the given attributes.

Report Temporal Bounds Message

 REQUEST ID

 QUERY RESULT

 TEMPORAL INFORMATION

 OBJECT ATTRIBUTES INFORMATION (OPTIONAL)

The Report Temporal Bounds message is sent in response to a Query Temporal Bounds

message. This message includes four fields. The REQUEST ID field is used to identify which

query this result is in response to. The QUERY RESULT indicates the success of failure of the input

query. The TEMPORAL INFORMATION defines the upper and lower time stamp of the knowledge

48

store’s boundary based on the query. If the result has been filtered by some attributes, the OBJECT

ATTRIBUTES INFORMATION is included in the response.

The Statistics-Based N
th

 Order Polynomial Predictor

The methods by which the future state of a value can be estimated, or predicted, are

multitude. Many of the more popular methods are covered within the literature review provided

in Chapter Two. As discussed there, many of those methods, including Kalman Filters and most

Neural Networks, incorporate a model of the object to aid in the prediction of the algorithm. For

the author’s work, it was desired to find an algorithm that was generic enough to be applied to a

very large variety of data without a priori knowledge of the system model.

To that end, the author has devised a unique algorithm called the Statistics-Based Nth Order

Polynomial Predictor (SNOPP). SNOPP is a novel combination of real-time data analysis and

statistics to generate a polynomial which can be used to estimate the future state of any

continuous time-variant data. That is, for a small change in time, the change in the output is

small. Systems exhibiting discontinuous behavior can be modeled, however large errors may be

observed around any discontinuous point.

SNOPP works to find a polynomial which best fits the trend of a given data set. Stated

formally, the data set is the matrix D which has size n × 2:

 (3.1)

The algorithm works by analyzing a given data set repetitively, attempting to fit a

polynomial to the data at a series of different orders (1st, 2nd … n
th). It also varies the length, or

history, of information. By varying the history size, SNOPP can achieve stable results for long

data trends, yet quickly react to changes in the data set. Three parameters govern the solution

49

space of the algorithm, a maximum order value, the window size and window count. The

maximum order value is an upper limit on the order to which the algorithm will attempt to fit a

polynomial. Window size is the number of data points which will be analyzed per solution

iteration. Window count is the number of data windows to solve, which is the number of

solutions to iterate through. Figure 3-2 shows the relationship between the window size and

window count parameters for some hypothetical data set. The window size parameter should

always be set equal to or greater than the maximum order value in ensure convergence of the

solution of the polynomial. Once the three parameters are set, the algorithm continues as follows.

SNOPP independently analyzes subsets of the original data set which are defined by the

window size and window count. For each subset, it seeks to find the best fit polynomial of up to

the maximum order. First, a polynomial of the highest possible order (let k = maximum order) is

fit to the data using the least-squares fit method. This polynomial is defined as,

 (3.2)

The least-squares method is based upon minimizing the sum of the residuals at each data

point. The residual equation is given as,

 (3.3)

The solution then, is to minimize with respect to each ,

 (3.4)

The polynomial can also be described in matrix form as,

 (3.5)

50

where: and

In this form the solution for can be found by premultiplying by as,

 (3.6)

which can be solved numerically or inverted directly if is well-formed, resulting in:

 (3.7)

This yields a k-order polynomial that is the best fit to the given data sub-set. However, it is

plausible that one or more of the order terms are not statistically significant. That is, while the

algorithm may have attempted to fit a 5th-order polynomial and found said solution, the best fit to

the data may actually be a 2nd-order polynomial. SNOPP uses a Type I Sum of Squares statistical

test to determine exactly what order polynomial best approximates the given data. The Type I

Sum of Squares evaluates the difference between a polynomial and its lower-order equivalent for

each polynomial up to the maximum order. For each test, the null hypothesis is that

while the alternative hypothesis is This test is done using the following as the F

Value:

(3.8)

Here MSE is the Mean Squared Error of the original k-order polynomial and is found by

where is the mean of the dataset.

(3.9)

(SSModel)i is defined as the Sum of Squares of the model or residuals and is calculated as

51

where

(3.10)

It is important to note here that is the value obtained from a least squares fit of a polynomial

of i-order. That is to say a polynomial must be fit to the original dataset for every order 1 to k.

Using equation (3.8) a value for Fi can be found. This value is evaluated against the

standard F-Distribution, which is a one-tailed continuous distribution. The F-Distribution is

evaluated with two degrees of freedom. The first degree of freedom is equal to 1 because this test

is always evaluating an equation with one more term of variance than the former, . The

second degree of freedom is equal to the degree of freedom of the MSE value, or

 The alternative hypothesis is rejected if the probability of it being untrue is

above some critical value. Typically a very large probability is applied to this test such as 20%.

If the test reveals that a particular has a high probability of being equal to zero, then that term

and all higher-level terms are considered zero.

This yields a value for exactly what order polynomial best fits the given data set (let p

equal this order). This yields a polynomial of order p for the given window size. SNOPP then

repeats this polynomial fit and analysis a total of window count times. Each time, the data set

grows by window size data points. This provides a number possible polynomials, each

statistically determined to be the best fit for their given data set. The algorithm then selects the

polynomial which has the lowest order solution. In case of a tie, the solution with the largest data

set is used.

The lowest order polynomial is chosen because higher-order polynomials tend to fit data

well within the dataset, but diverge when used for extrapolation, which is the goal of the

52

future state estimator. The data set with the largest history is used because with larger data sets

provide more statistical significance and a more stable trend for data extrapolation. By

combining small window size with a large number of window counts, long, stable trends in the

data can be accommodated, but changes in that trend can be quickly detected and adjusted to by

the smaller datasets which represent the most recent history of the data.

A numeric example of the SNOPP algorithm is included in Appendix C of this dissertation

for clarity.

53

Confirm Creation

Report Object(s)

Report Object Future

Report Geospatial Bounds

Report Temporal Bounds

Spatiotemporal World Model
Knowledge Store

Create Object(s)

Modify Object(s)

Query Object(s)

Query Object Future

Query Geospatial
Bounds

Query Temporal Bounds

Delete Object(s)

Confirm Modification

Confirm Deletion

Assign Object Id BlockRequest Object Id Block

Figure 3-1 Overview of the input and output messages associated with the Spatiotemporal World

Model Architecture.

54

Figure 3-2 Window Size and Window Count are two governing parameters for the Statitics-

Based Nth Order Polynomial Predictor. Here the relationship between the dataset,
Window Size and Window Count is shown.

55

CHAPTER 4
IMPLEMENTATION DETAILS

In this chapter, the author outlines the technical details of a reference implementation of

the architecture and prediction algorithm presented in the previous chapter. Many technical

challenges existed in implementing the theoretical Spatiotemporal World Model and the

Statistics Based Nth-Order Polynomial Predictor. Discussion of those challenges and the way

each was overcome is detailed herein. The JAUS World Model Vector Knowledge Store

Message Set section discusses the details of the JAUS messages implemented to embed the

theoretical architecture into the research environment available. The Database Selection and

Design section discusses the geospatial database selected for use in this implementation. The

design of the database’s tables allows for easy and flexible implement a variety of prediction

techniques, a Generic Predictor interface was designed and is described in the section titled the

same. The Polynomial Predictor section outlines the details of the reference implementation of

the SNOPP algorithm. Lastly, the World Model Vector Knowledge Store section details how the

various pieces were brought together into a single JAUS component.
JAUS World Model Vector Knowledge Store Message Set

The Center for Intelligent Machines and Robotics (CIMAR) has been involved in the

activities of the Joint Architecture for Unmanned Systems (JAUS) Working Group for several

years through sponsored work with the Air Force Research Lab (AFRL) at Tyndall Air Force

Base. As such, the bulk of the research work done at CIMAR focuses on the usability and

extension of JAUS to solve a large variety of ever-increasingly complex robotic system

problems. As discussed in Chapter 2, recent work within the JAUS Working Group has focused

on the area of world modeling. However, the work done prior to the author’s research was

primarily focused on the query and storage of static geospatial data objects. Therefore the

56

research presented herein was focused on extending the existing World Model Vector

Knowledge Store (WMVKS) component to support the generic Spatiotemporal World Model

Architecture defined in the previous chapter.

This approach provided a number of key advantages. First, a vast and reliable collection

of software which was developed at CIMAR to aid in the development and deployment of

JAUS components. Second, the ability to quickly insert the author’s experimental component

into an existing JAUS robotic platform for field testing and evaluation. Finally, a wealth of

knowledge about the JAUS architecture and its capabilities allowed the author to focus more on

application details and less on basic infrastructure of the system.
The JAUS WMVKS message set is based upon three primary entities; the object geometry,

feature classes and feature class attributes. The object geometry can be one of a point, line or

polygon along with the associated global coordinates of each vertex of the geometry. The current

WMVKS message set only supports the global latitude and longitude coordinate system based on

the WGS84 ellipsoid. This is the primary global coordinate system defined for use in JAUS.

Associated with each object is also one or more feature classes. Feature classes are used to

categorize the geometries. Examples of feature classes may include roads, terrain, occupancy,

trees, etc. The feature classes can be closely associated with different layers of information in

typical geospatial information (GIS) system. Associated with each feature class is a single

feature class attribute. A feature class attribute can be of several different types (byte, integer,

float, RGB, etc). These attributes provide more detailed data about the feature class they

describe. For example, an object may have the “Velocity_Meters_Per_Second” feature class

associated with it, and its attribute value may be “11.2.” This value would indicate the velocity

of the object it is attached to. In the reference implementation, both objects and their feature class

57

attributes can be considered dynamic by the WMVKS. The message set supports the ability to

designate separate estimation algorithms for each object and each feature class attribute. This

allows a large variety of objects and feature classes to be handled by the component.

In order to successfully deploy the WMVKS as a Spatiotemporal World Model, the

existing WMVKS message set had to be modified and extended to support a large variety of new

data. Table 4-1 lists the various messages and implemented in the WMVKS component

developed for this research. Messages which did not exist in the original WMVKS message set

and have been added for this research are indicated in the appropriate column. The message set

definition is included as Appendix A.

Some key messages and their content were developed specifically to support the author’s

work. These include the Query Vector Knowledge Store Objects Future State, Report Vector

Knowledge Store Objects Future State, and Modify Vector Knowledge Store Objects messages.

The original WMVKS message set did not provide an interface to allow a client to change or

modify an object’s state after insertion. The new modify message addresses this need. The

original WMVKS message set also did not address the ability to query about time-variant data.

To that end, the query and report future state messages were developed. These messages extend

the functionality of the original knowledge store, adding the ability to reason about the future of

an object or its attributes.

Database Selection and Design

A significant challenge of world modeling task was to implement some methodology to

store the knowledge store’s objects and attributes. As discussed in Chapter 2, Spatial Databases

are relational or object-relational database management systems (DBMS) which specialize in the

handling of spatial data. The DBMS approach was chosen for the author’s work because it

provided a number of advantages such as

58

 persistent storage capabilities,
 high-level (e.g. SQL) interface languages,
 availability of robust and complete spatial query capabilities,
 support of temporal data types and queries, and
 portability of code between projects.

A constraint of the development environment at CIMAR is that all the robotic systems run

on some version of the Linux operating system. This is due to a number of factors which are

themselves outside the scope of this discussion. However, in the selection of a candidate spatial

database technology, it was a requirement for the purposes of this work. The author was also

interested in attempting to accomplish the goals of the work through the use of an open-source

implementation. While various DBMS technologies are available cheaply or for free to

educational institutions, a majority of the author’s work was destined for use by AFRL, where

the DBMS of choice could cost significantly more. See Table 2-1 for more details about various

Spatial DBMS technologies.

PostgreSQL is an open source object-relational DBMS. PostGIS is a collection of data

types and functions which “spatially extend” PostgreSQL to allow the database to function as a

spatial knowledge store. PostGIS is also available open source. A companion software library,

Geometry Engine Open Source (GEOS) [48], is a C/C++ API which implements the OpenGIS

Consortium’s Simple Features Specification for SQL [29]. This is important because the bulk of

the work done at CIMAR is done in the C/C++ programming languages. PostgreSQL, PostGIS

and the GEOS library provide the core geospatial capabilities of the implementation.

PostgreSQL also supports data types for temporal data. This allows support for the storage and

querying of time stamps in the database, providing the necessary temporal capabilities for the

implementation.

59

The design of a database schema was also required. The goal was to easily and efficiently

store a large variety of objects within the database which could be quickly and easily queried.

Two tables were created to store the objects and their related feature classes. Figure 4-1 shows

the Entity-Relationship Diagram for the database design and the various field names for each

table.

The Objects table consists of 9 fields: object_id, object_type, buffer_meters,

object_timestamp, utm_init_longitude, estimator_type, estimator_solution, vector_object, and

geometry. Table 4-2 lists these fields, their PostgreSQL data type and a brief description of

each. The FeatureClass table consists of 7 fields: object_id, fc_id, fc_estimator_type,

fc_estimator_solution, fc_data_type, attribute and attribute_timestamp. Table 4-3 lists these

fields, their PostgreSQL data types and a brief description of each. To ease in the use of these

two tables, a unique SQL VIEW is constructed in the database. This is constructed as a SQL

JOIN of the two tables with the following statement:

CREATE VIEW snapshot AS

SELECT * FROM objects JOIN featureclasses

 USING (object_id);

This allows quick and easy access to the combination of data from the two tables and is used

extensively in the various query responses.

Generic Predictor Interface

One key element to the overall Spatiotemporal World Model Knowledge Store

Architecture is the ability to easily deploy a variety of prediction algorithms. It was important

that the reference implementation address this in a flexible and robust manner. To that end, the

Generic Predictor Interface was developed. The Generic Predictor provides a common set of

functionality that all predictors must implement. The methods supplied by the interface include

solver, estimator, toBuffer and fromBuffer. The interface also provides common storage for the

60

data set that the prediction algorithm is concerned with. It also provides a storage container for

any specific parameters that a specific predictor needs. One common configuration parameter is

included in the interface. This is a value for the minimum number of data points the predictor can

solve for. This is important because some prediction algorithms are unable to find a solution if

less than the minimum number of data points are provided. (e.g. a linear solution is not viable

given a single data point)

The solver method is used to generically involve a specific algorithm’s unique solution.

The estimator method similarly provides a common method of retrieving the value of a given

predictor for a given data point. Last, the toBuffer and fromBuffer methods provide a

mechanism by which a specific predictor can pack its critical data into and from a byte buffer.

This is used in conjunction with the estimator solution fields in the database to provide fast,

efficient access to the predictor’s solution for future state queries. Three different prediction

techniques were implemented to support the author’s work: a static predictor, a linear predictor

and a polynomial predictor. The implementation details of the polynomial predictor are covered

in the next section. Details of the static and linear predictors are covered in the Dynamic World

Model Vector Knowledge Store section later in this chapter. Excerpts of the Generic Predictor

code are provided in Appendix B.

Polynomial Predictor Implementation

The Polynomial Predictor is an implementation of the Statistics-Based Nth Order

Polynomial Predictor (SNOPP) described theoretically in Chapter 3. One key feature of the

polynomial predictor is the incorporation of a number of configuration parameters that control its

behavior. These configuration parameters are listed in Table 4-4. The Window Count and

Window Size parameters align with the ones outlined in the discussion of SNOPP in the previous

chapter. The Minimum and Maximum Order values provide limits on the solution provided by

61

the predictor. The P-Critical Value parameter is used to control which level of confidence is

imposed on the alternative hypothesis test. The Minimum Point Count parameter is inherited

from the Generic Predictor and indicates the minimum number of points needed to evaluate the

predictor. This is usually driven by some combination of Window Size and/or Maximum Order.

The predictor makes use of the GNU Science Library (GSL) [49] for its multivariable

least-squares fit functions. The gsl_multifit_linear() method fits a function of the form

. The vector is formed from the collection of values from the object or attribute being

predicted. Each row of the matrix is the corresponding timestamp value, raised to the powers

0 through k. This casts the multivariable least-squares regression in the form of a kth order

polynomial, i.e. .

This predictor also makes use of GSL to evaluate the F-Value obtained from equation

(3.8). To evaluate this, the cumulative distribution value Q(x) is found using the

gsl_cdf_fdist_Q() function. This value is evaluated against the P-Critical Value provided to

analyze the alternative hypothesis outlined in Chapter 3. This yields the statistically significant

order solution (p). For each window (defined by Window Count) the Polynomial Predictor

compares the output solution for . As outlined in Chapter 3, the solution with the lowest order

and greatest window size is chosen.

To aid in the ease of use by the WMVKS, the Polynomial Predictor implements the

Generic Predictor Interface discussed previously. To do so it must provide functions for the

solver, estimator, toBuffer and fromBuffer methods. The solver and estimator functions are

straight-forward and either solve for the prediction equation, or estimate using that solution. The

toBuffer method packs a collection of solution-critical values into a byte buffer. These include

62

the solution’s order and the vector. The fromBuffer method does the inverse operation. This

provides a quick and flexible way to store the vital information for future state queries.

Dynamic World Model Vector Knowledge Store

The purpose of this chapter, thus far, has been to outline the building blocks that make up

the World Model Vector Knowledge Store (WMVKS) that was implemented to support the

author’s work. Figure 4-2 shows an outline of the WMVKS as implemented. The WMVKS was

implemented as a JAUS Component based on a common component template developed at

CIMAR for previous JAUS work. This allowed the author to focus efforts on the implementation

of the WMVKS behavior and not the overall JAUS architectural requirements. Each message

outlined in Table 4-1 needed to be implemented to be used by the WMVKS. The code to

implement the various messages is also based on a flexible skeleton created previously at

CIMAR for JAUS messages.

The WMVKS is an event-driven component. That is, it only has to process data as requests

and queries are received and has no observed periodic behavior (outside the normal JAUS

periodic behavior which is a 1 Hz Report Heartbeat Pulse message). Therefore, its state machine

is rather simple. JAUS defines several valid states of a given component. However, the WMVKS

typically transitions straight to READY unless some error or fault is detected. When a message is

received, the component does whatever work is necessary to process and answer that request.

As discussed previously, a key feature of the overall Dynamic World Model Knowledge

Store architecture is the ability to deploy different prediction algorithms. To support the author’s

work, three unique prediction algorithms were implemented; a static predictor, a linear predictor

and the polynomial predictor discussed previously. Each predictor implements the Generic

Predictor interface to allow ease of use by the WMVKS. The static predictor is the most simple.

63

It is used as the prediction algorithm for any static object or attribute and is included for

completeness in the design. It stores the latest value from the dataset as the solution and returns

this as the estimated value for any point in time. The linear predictor implements a simple least-

squares linear fit to a set of data. For the implementation used, up to ten data points are used to

fit the data. The linear fit predictor stores its result in a similar manor to the polynomial predictor

through the use of the toBuffer and fromBuffer methods of the Generic Predictor interface. The

least-squares approximation is done using the gsl_fit_linear() method from the GSL

library.

The static and linear prediction algorithms were implemented to provide robust solution

future state queries. While the polynomial predictor was the primary prediction method

developed and tested for this dissertation, it was realized that no valid solution would exist for

data sets prior to the minimum point count defined in the polynomial predictor. Rather than

handle this as a special case in that predictor, the author made use of the flexible predictor

capabilities to implement lower count prediction techniques. Therefore, when a data set is made

up of a single value, the static predictor is automatically invoked, regardless of the estimation

type identified (the original estimation type value is preserved and left unmodified in the

database record). If more than a single data point is present, but less than the specified

predictor’s minimum point count, the linear predictor is used. This not only allowed a more

robust solution to state prediction, it also increased the capability of the WMVKS by providing

three prediction algorithms instead of just the one.

One of the more complex messages handled by the WMVKS is the Create Vector

Knowledge Store Object(s) message. This message may contain one or more objects with

various attributes which must be handled by the WMVKS and added to its current collection of

64

objects. The code for this procedure is included as part of Appendix B. The following is a step-

by-step explanation of this process:

1. The received Create Vector Knowledge Store Object(s) message is “unpacked” from the

byte buffer into its specific data structure.
2. For each object, the object ID bit is checked to see if it has been included, if not, the next

valid value is queried from the database.
3. Each object is translated from its data structure into an SQL INSERT statement for

storage into the Objects table of the database:
INSERT INTO objects(<table fields>)

VALUES (<message data>);

4. Each feature class included with an object is similarly converted into an SQL INSERT
statement for insertion into the FeatureClass table of the database.

INSERT INTO featureclass(<table fields>)

VALUES (<message data>);

5. If the confirmation has been requested, a Report Vector Knowledge Store Objects
Creation message is sent back to the originating client with a list of the object IDs which
have been stored.

Similar to the create message, the Modify Vector Knowledge Store Object message

invokes a complex process in the WMVKS. This process involves the various prediction

algorithms; invoking them to provide solutions for future state estimation. Each time an object is

modified, new information is included in the state history. This allows a new, updated solution to

be found for future state estimation. The more often an object’s state is updated, the more

quickly the various predictors may be able react to changes in the observed behavior and account

for it in the future state estimator. Using the prediction methods implemented for the author’s

work, prediction of an object’s position is limited to estimating the centroid of the object. This

means the bounds of a polygon or line are considered static for the author’s work. This

assumption may not always be true. Since the prediction algorithms implemented in the

WMVKS are only concerned with the state of a single time-varying dataset, the estimation of

future geospatial position is broken down into two datasets (Easting vs. Time and Northing vs.

Time). The position solution is then the combination of two separate prediction solutions.

Position estimation is done in the Universal Transverse Mercator (UTM) coordinate system

65

rather than the Latitude, Longitude and Altitude (LLA) coordinate system so that Euclidean

Geometry can be applied. Projection between coordinate systems is provided by a UTM library

that is part of CIMAR’s core library set.

The code to handle receipt of a Modify Vector Knowledge Store Objects message is also

included in Appendix B, but a step-by-step account is provided here for clarity:

1. The received Modify Vector Knowledge Store Objects message is “unpacked” from the

byte buffer into its specific data structure.
2. The object ID included in the received message is checked against the database. If the

target object does not exist, an error may be reported.
3. The vector_object data field is retrieved from the database through the use of a SQL

SELECT statement and used to create a copy of the database object in memory:
SELECT vector_object FROM objects

WHERE object_id = <message_object_id>;
4. The information contained in the modify message is compared to the information

retrieved from the database. Certain fields (such as buffer_meters) are replaced if
modified. Modification of values in the database is done using a SQL UPDATE
statement:

UPDATE objects SET buffer_meters = <value>

WHERE object_id = <message_object_id>;
5. In the case of a dynamic object or attribute, the WMVKS adds the included information

to the existing object or attribute history, as appropriate. If the value being modified is
considered static, the modification message is used to replace the current value with the
modified one.

6. The modified and/or updated version of the vector_object information is generated and
updated in the appropriate field of the database.

7. Since object information has changed, the prediction solution must be updated. For each
feature class, the appropriate predictor (static, linear or polynomial) is called and the
solution is stored in the fc_estimator_solution field of the FeatureClass table. For every
object, the estimator_solution is populated with the prediction solution for both the
Easting (X) and Northing (Y) values.

8. If the confirmation bit has been requested, the WMVKS responds to the originating client
with a Report Vector Knowledge Store Object Modification message.

The create and modify messages provide the primary methodology for a data provider

(such as a sensor) to insert or change data within the WMVKS. However, other clients may be

primarily interested in the consumption of that information. Clients interested only in the current

state of an object or some attribute can use the Query Vector Knowledge Store Object(s)

message. This message retrieves the object from the database through a SQL SELECT statement.

66

This query message is flexible in the way it can be constructed, from boundary queries to

specific objects and/or attributes

The other approach that can be employed is to query the future state of an object or

attribute. This is done through the use of the Query Vector Knowledge Store Object(s) Future

State message. This message can be used in two ways, designated by the query type field. In the

first, called Absolute Query, the timestamp provided is considered an absolute time in the

future at which to query the state of an object and its attributes. The other, Relative Query, is

used to specify some time offset which will be added to the current time at which the WMVKS

receives the message. This feature was added to the message to ease the use of registered

periodic events (called Service Connections in JAUS, this mechanic is outside the scope of the

author’s discussion [1]). In either case, the query time is used by the appropriate predictor to

generate an estimate for the future value of the object and its attributes. The code for handling a

Query Vector Knowledge Store Object(s) Future State message is also included in Appendix B.

An outline of this code is provided below:

1. The received Query Vector Knowledge Store Object(s) Future State message is
“unpacked” from the byte buffer into its own data structure.

2. For each object specified in the query, the database is checked to ensure an object with
that id value exists.

3. For each object queried, the query time value is setup, either using the absolute or relative
time method. Note, this means multiple future state queries can be setup with different
query times. The advantage of this is the ability to construct a query for the future state of
a single object at multiple query times or offsets using a single message.

4. For each object queried, the appropriate object predictor solution (in byte buffer format)
is read from the database using an SQL SELECT statement:

SELECT estimator_solution FROM objects

WHERE object_id = <message_object_id>;
5. This object predictor solution is unpacked appropriately (into both an X and Y predictor)

and then used to estimate the position of the object at the given query time using the
estimate function.

6. For each object queried, the appropriately queried attributes are also estimated. To do so,
the attribute estimator solutions are first retrieved from the database using a SQL
SELECT statement. They are then converted using the predictor’s fromBuffer method.

67

Lastly, state estimates are conducted using the appropriate query time and estimator
method.

7. The object’s position estimation and any appropriate attribute estimations are then

returned to the querying client via a Report Vector Knowledge Store Object(s) Future
State message.

The WMVKS component provides a robust implementation of the Spatiotemporal World

Model architecture outlined in Chapter 3. It does so by combining the capabilities of the JAUS

World Model Vector Knowledge Store message set, the advantages of the PostgreSQL database,

and the capabilities of an array of unique prediction techniques. The techniques and approach

outlined above provide a unique solution to the problem of storing and querying the future state

of a dynamic object or attribute within the JAUS architecture. Many of the same techniques

could easily be applied to any other robotics architecture, provided the messaging interface could

be modified to support the message interface introduced in Chapter 3.

68

Table 4-1 JAUS WMVKS Message Set as implemented in the reference World Model Vector
Knowledge Store component developed to support the author’s research. Both new

and extended JAUS messages are listed.

Message Name

JAUS

Command

Code

New

Message

Input /

Output

Message

Request Vector Knowledge Store Object Id Block F120h ● Input

Assign Vector Knowledge Store Object Id Block F320h ● Output

Create Vector Knowledge Store Objects F121h Input

Report Vector Knowledge Store Objects Creation F321h Output

Modify Vector Knowledge Store Objects F122h ● Input

Report Vector Knowledge Store Object Modification F322h ● Output

Delete Vector Knowledge Store Objects F123h Input

Report Vector Knowledge Store Objects Deletion F323h ● Output

Query Vector Knowledge Store Objects F130h Input

Report Vector Knowledge Store Objects F330h Output

Query Vector Knowledge Store Geospatial Bounds F132h Input

Report Vector Knowledge Store Geospatial Bounds F332h Output

Query Vector Knowledge Store Temporal Bounds F133h ● Input

Report Vector Knowledge Store Temporal Bounds F333h ● Output

Query Vector Knowledge Store Objects Future State F134h ● Input

Report Vector Knowledge Store Objects Future State F334h ● Output

Table 4-2 Object table data fields, PostgreSQL type and description.
Field Name PostgreSQL Type Description

object_id INT4
PRIMARY KEY Unique object id value assigned to each object.

object_type INT2 Value of the JAUS WMVKS object type
(i.e. point, line or polygon).

buffer_meters FLOAT Size of an optional buffer around the object’s

geometry.

object_timestamp TIMESTAMP Last time stamp value associated with the object
geometry. Used for temporal queries.

utm_init_longitude DOUBLE Value, in radians, of the longitude of the first point

69

PRECISION associated with this object. This is provided to
ensure proper projection between LLA and UTM
for an object.

estimator_type INT2 Value of the estimator type associated with this
geometry.

estimator_solution BYTEA
Hex string of the binary array of the estimator
solution. Used to quickly provide solutions to
future state queries.

vector_object BYTEA Hex string of the binary array of the JAUS Vector
Object structure.

Geometry GEOMETRY
PostGIS geometry column used to store the latest
geometry value of the object. Used for geospatial
queries.

Table 4-3 Feature Class table data fields, PostgreSQL types, and description.
Field Name PostgreSQL Type Description

object_id INT4
PRIMARY KEY Unique object id value assigned to each object.

fc_id INT4
PRIMARY KEY

Feature Class id value, non-unique. However,
there can only be one fc_id value per object_id
value.

fc_estimator_type INT2 Value of the estimator type associated with this
geometry.

fc_estimator_solution BYTEA
Hex string of the binary array of the estimator
solution. Used to quickly provide solutions to
future state queries.

fc_data_type INT2 Value of the enumerated data type of this feature
class’ attribute.

Attribute INT8 Feature Class Attribute value, stored as an 8-byte
integer.

attribute_timestamp TIMESTAMP Last time stamp value associated with the object
geometry. Used for temporal queries.

Table 4-4 Polynomial Predictor configuration parameters
Parameter Name Description

Minimum Point Count
The minimum number of data points for which the predictor can
successfully be used. This is usually dependent on the Minimum /
Maximum Order parameters and/or the Window Size parameter.

70

Minimum Order This is the minimum order polynomial the predictor will analyze for
a solution. Usually 0 or 1.

Maximum Order

This is the maximum order polynomial the predictor will analyze for
a solution. Higher order polynomials can give better results in
dynamic situations, and lower order ones are more stable in
extrapolation.

Window Size This is the size of each data window to analyze.

Window Count This is the number of data windows, each Window Size larger than
the previous, to analyze.

P-Critical Value This value is used to evaluate the statistical significance of a
particular order.

Object

object_id

fc_id

fc_estimator_type

fc_estimator_solution

FeatureClassHAS

object_id

object_type

buffer_meters

object_timestamp

utm_init_logitude

estimator_type

estimator_solution

vector_object

geometry

*1

fc_data_type

attribute

attribute_timestamp

Figure 4-1 Entity-Relationship Diagram of WMVKS Database

71

PostgresSQL Database with
PostGIS Geospatial Extensions

World Model Vector
Knowledge Store

libpsql
PostgresSQL C API

SQL Queries & Responses

libgeos
Geometry Engine

Open Source

Geospatial Objects

libCimar, libJausC, libNodemanager
JAUS Interface Libraries

World
Model
Clients

JAUS World Model
Message Set

Static Predictor

Linear Predictor

Polynomial Predictor

Generic Predictor Interface

libgsl
GNU Science Library

Figure 4-2 World Model Vector Knowledge Store Implementation Diagram.

72

CHAPTER 5
TESTING AND RESULTS

Previous chapters have dealt with the background and implementation details of the

author’s dissertation. Herein, the testing methodology and results for a series of test are

presented. To test the World Model Vector Knowledge Store (WMVKS) component a

component capable of behaving as a source of dynamic information was required. The Laser

Tracking Smart Sensor section covers a component developed to address this need. The Test

Procedure and Plans chapter describes the various test scenarios devised and how each was

conducted. Lastly, the Test Results section provides an overview of the results obtained by the

author’s work.

Laser Tracking Smart Sensor

In order to properly test the WMVKS and its implementation, a source of dynamic

information was needed. For the author’s work, a simple laser-based object tracking algorithm

was implemented to collect real-world test data which could used to test the knowledge store.

The Laser Tracking Smart Sensor (LTSS) was developed based on a combination of previous

research activities at CIMAR.

In the spring of 2003, a laser-based tracking algorithm was developed by the author and

another researcher at CIMAR to support the “follow-the-leader” challenge at the Intelligent

Ground Vehicle Competition (IGVC). This challenge was to follow at some fixed distance a

human-driven lawn tractor. However, the algorithm has shown effectiveness at tracking and

following a number of objects including other robots, humans and larger vehicles.

The laser-tracking algorithm works by first receiving a user input which “seeds” the

system and identifies the object to be tracked (Figure 5-1a). The system then searches for all

neighboring points within some threshold distance to the object. Once all neighboring points are

73

identified, a bounding box around the collection is established (Figure 5-1b). On successive laser

scans, the system uses an estimated bounding box to seed itself and repeat the threshold based

search. The system is controlled to allow the collection of points to grow and shrink at some

user-defined rate.

The algorithm builds up a history of the tracked object’s position and uses them to estimate

the velocity of the object. This velocity is in turn used to estimate the future position of the

object at successive laser scans. Due to the fast (35-70Hz) rate at which laser scans occur, a

linear velocity prediction has yielded adequate results. The LTSS algorithm has been shown to

be incredibly capable at not only tracking a visible dynamic object, but estimating and

reacquiring the object if it travels through the shadow of another object. Figure 5-2 shows the

LTSS algorithm in action. The selected object is shown in orange while the current and future

bounding boxes are shown in blue and green respectively. The estimated velocity vector is also

shown.

This algorithm successfully enabled the CIMAR entry to complete the “follow-the-leader”

course in the first attempt at the 2003 IGVC competition. CIMAR’s entry (the TailGator) was the

only vehicle to complete the course at the competition. Figure 5-3 shows the TailGator platform

on the course following a human-driven lawn tractor.

More recent work has been done by the author to integrate this laser algorithm into the

JAUS system architecture onboard the NaviGATOR. For the DARPA Grand Challenge contest,

CIMAR developed a common sensor architecture called Smart Sensors. The LTSS is based on

this architecture which allows easy interfacing with the existing JAUS infrastructure onboard the

NaviGATOR. More information about the Smart Sensor architecture can be found in [50].

74

The IGVC laser algorithm was integrated into a smart sensor and interfaced to the planar

laser mounted on the front of the NaviGATOR. Figure 5-4 shows the output of this Smart Sensor

and provides a brief description. This setup was used track a truck driving in front of the

NaviGATOR as a test location near the university. These tests provided a collection of data used

to evaluate the performance of the WMVKS. Figure 5-5 shows the test setup with the

NaviGATOR and the truck used as the tracked object.

Test Procedure and Plans

The LTSS data was used to test the WMVKS and its associated algorithms. For the

author’s work, log files were generated by the LTSS which contained the tracked object’s

position and a timestamp for each iteration of the LTSS. Also logged at the same time were the

NaviGATOR’s position, velocity and heading values. This provided a variety of time-variant

data which could be used to evaluate the performance of the WMVKS. Two test setups were

devised. In the first test, the NaviGATOR was stationary while a moving object passed in front

of it. This object was detected, then tracked by the LTSS and its position logged. Since the

NaviGATOR is stationary for this test, it position, velocity and heading data is not used in the

author’s work. In the second test (shown in Figure 5-5), the NaviGATOR is driven some

distance behind a large truck in a looped course. The truck is detected and tracked throughout the

loop. Once again the object’s position is logged, along with the NaviGATOR’s position, velocity

and heading. Each test was performed five times. The log files were later taken and played-back

in real time to the WMVKS and the results of the prediction algorithms recorded. To test the

capabilities of the WMVKS, these log files were used to analyze five different test scenarios.

Each scenario is described below along with a respective test plan.

75

Test Scenario 1: Tracked Object Using Polynomial Predictor from Stationary Platform

In this scenario, the tracked object is moving while the NaviGATOR is stationary. It

demonstrates basic behavior of the tracking algorithm and WMVKS performance. The

polynomial predictor is used to estimate the future position of the tracked object one second, two

seconds, three seconds, four seconds and five seconds in the future. Table 5-1 outlines the test

plan; included therein is the test purpose, hypothesis, expected results, test design and logged

data.

Test Scenario 2: Tracked Object Using Polynomial Predictor from Moving Platform

In this scenario, the tracked object is moving while the NaviGATOR is following it at

some distance (both vehicles are human-driven for this test). This test demonstrates performance

of the WMVKS for a common scenario, which is tracking objects moving around the vehicle

while the vehicle itself is in motion. The polynomial predictor is used to estimate the future

position of the tracked object one second, two seconds, three seconds, four seconds and five

seconds in the future. Table 5-2 outlines the test plan; included therein is the test purpose,

hypothesis, expected results, test design and logged data.

Test Scenario 3: Tracked Object Using Linear Predictor from Moving Platform

In this scenario, the tracked object is moving while the NaviGATOR is following it at

some distance (both vehicles are human-driven for this test). This test is done in contrast to

scenario two in using the same inputs but analyzing it using the linear predictor instead. The

linear predictor is used to estimate the future position of the tracked object one second, two

seconds, three seconds, four seconds and five seconds in the future. Table 5-3 outlines the test

plan; included therein is the test purpose, hypothesis, expected results, test design and logged

data.

76

Test Scenario 4: Velocity Attribute Using Polynomial Predictor

In this scenario, the WMVKS is used to predict the future state of a feature class attribute

rather than an object’s position. This shows the ability of the WMVKS to handle data that is not

geospatial in nature. The data used in this test was collected from the NaviGATOR’s Velocity

State Sensor (a standard JAUS component) during the test runs described previously. The

polynomial predictor is used to estimate the velocity of the NaviGATOR one second, two

seconds, three seconds, four seconds and five seconds in the future. Table 5-4 outlines the test

plan; included therein is the test purpose, hypothesis, expected results, test design and logged

data.

Test Scenario 5: Heading Attribute Using Polynomial Predictor

In this scenario, the WMVKS is used to predict the future state of a feature class attribute

which represents the heading (or orientation) of some object. Data used for this test was collected

from the Global Position Sensor component (a standard JAUS component) onboard the

NaviGATOR. The polynomial predictor is used to estimate the state of the attribute one second,

two seconds, three seconds, four seconds and five seconds in the future. Table 5-5 outlines the

test plan; included therein is the test purpose, hypothesis, expected results, test design and logged

data.

Test Results

In this section, the data collected for each test scenario will be analyzed and presented.

Each test scenario was conducted five times. In this chapter, only one of each of these tests will

be presented and discussed. Representative charts for each scenario are presented.

Test Scenario 1 Results

The purpose of this test scenario is to show the position estimation capabilities of the

WMVKS as implemented by the author. As discussed in Chapter 4, to estimate the position of an

77

object, two polynomial predictors are employed, one for the easting (x) value and one for the

northing (y) value. The position values are estimated in the Universal Transverse Mercator

(UTM) coordinate system and converted into Latitude and Longitude prior to being sent to the

LTSS. The test plan for this test is included as Table 5-1.

Figure 5-6 show a typical plot of the easting vs. northing values used as source data for this

series of tests. This chart shows that the tracked object moved primarily along the north/south

axis with very little movement in the east/west direction. In figure 5-7 easting and northing

values are plotted separately with respect to time. Figure 5-8 shows the easting vs. time plot with

the one second, three second and five second prediction values. Figure 5-9 shows the northing

vs. time plot with one second, three second and five second prediction values. Figure 5-10 shows

the combined easting vs. northing plot with the predicted values.

 Overall, test scenario 1 has demonstrated the ability of the WMVKS to handle dynamic

position data, reason about the future state of that data and provide feedback to the LTSS. It has

shown successful use of the polynomial predictor algorithm and the new JAUS world model

message set implemented by the author.

Test Scenario 2 Results

The purpose of this test is to demonstrate the ability of the WMVKS to handle prediction

of an object tracked by the LTSS over a much longer distance and time span. The test data

covers over 3 minutes and 800 meters in length. Figure 5-11 shows a plot of easting vs. northing

for a typical data set from this test.

Figure 5-12 shows the same data plotted against time with easting on the left axis and

northing on the right axis. Figure 5-13 provides a plot of just the easting value vs. time and the

one second, three second and five second prediction values. Due to the scale of this plot, details

are difficult to read. Therefore Figures 5-14, 5-15 and 5-16 provide closer views of the more

78

critical sections of the plot. Figure 5-17 shows the northing vs. time plot with corresponding

prediction values. Again, Figures 5-18 and 5-19 are provided for clarity.

Figures 5-20 and 5-21 show, graphically, the error in the 1 second predictor plotted on one

axis with the actual and predicted values plotted on the other axis. These charts show that the

polynomial predictor demonstrates large errors around changes in the data trend, but quickly

reacquires the proper trend and provides good prediction results.

The previous charts show graphically the error in the polynomial predictor. An analysis

was conducted which calculated the error in the predicted value for all five trials of this scenario;

the results of which are presented in Table 5-6. Here, the performance of the polynomial

predictor can be shown to yield favorable results. The average error on the 1 second predictor is

0.68 meters for the easting value and 0.60 meters for the northing values. Combined there is an

overall 1.26 meter average error in the predicted position compared with the recorded true

position 1 second in the future. The standard deviation value for the 1 second prediction was

calculated to be 1.89 meters for the combined total of easting and northing. This means that if

one assumes the error is normally distributed, 68% of the data falls within one standard deviation

and 95% of the data is within two standard deviations (3.78 meters here) from the average value.

Therefore for the 1 second predictor, 68% of the time, the error in the predicted value will be

between -0.6 and 3.2 meters.

Test Scenario 3 Results

The purpose of this test is to show the ability of the WMVKS to apply a different

prediction algorithm to the same set of input data. Using the same data set used in scenario 3, the

position of the tracked object is estimated using the linear predictor.

As the same initial data set is used in both scenario 2 and 3, figures 5-11 and 5-12 again

illustrate the source data. Figure 5-22 provides a plot of the easting value vs. time including the

79

one second, three second and five second prediction values. Due to the scale of this plot, details

are difficult to read. Therefore, figures 5-23, 5-24 and 5-25 provide closer views of more critical

areas of the plot. Figure 5-26 provides a plot of the northing value vs. time including the one

second, three second and five second prediction values. Again, figures 5-27 and 5-28 are

provided for clarity.

The plots shown in figures 5-20 through 5-24 demonstrate the prediction qualities of the

linear prediction algorithm. Compared to figures 5-13 through 5-19, the linear predictor does not

yield results as accurate as the polynomial predictor. The linear predictor does exhibit a better

response time to changes in trends, but has a much larger spread in the data at any given

time. This is due to the rather small maximum point size used for this test (10). A

smaller value provides quicker response to trend changes, but less stable results overall due to

less data history in the estimator’s solution.

Again, an analysis of the error was conducted and the results are presented in Table 5-7.

Figure 5-29 shows the error values with respect to time plotted alongside the actual and predicted

values for the 1 second prediction of the easting value. Figure 5-30 shows the same plot for the

northing data. The values calculated in the error analysis demonstrate that the polynomial

prediction method provides better overall results in this test scenario than the linear predictor.

The linear predictor has a 1.55 meter error on average in the easting data (for a 1 second

prediction) and a 0.89 meter error in the northing data. This yields a combined average error of

2.44 meters for a 1 second prediction. This value is 1.2 meters more than the polynomial

predictor for the same data set and prediction interval which is a 91% difference.

80

Test Scenario 4 Results

The purpose of this test scenario is to demonstrate the WMVKS’ ability to handle dynamic

feature class attributes and reason about the future state of those attributes. The velocity of the

NaviGATOR over the course of a 3 minute drive is used as the sample data set.

Figure 5-31 shows a plot of the velocity data vs. time which is typical of this test scenario.

Figure 5-32 shows the same velocity vs. time plot combined with the predicted values one

second, three seconds and five seconds in the future. Figure 5-33 shows a plot of the 1 second

predictor’s results. Here the error vs. time is plotted alongside the actual and predicted values. A

summary of the error results in included in Table 5-8.

This test successfully demonstrates the ability of the WMVKS to predict the future state of

dynamic feature class attributes. It also demonstrates the ability to make use of estimation

techniques for a variety of data. Here the polynomial predictor is used as the prediction algorithm

and yields favorable results with an average error of 0.38 meters per second for the 1 second

predictor and a standard deviation of 0.34 meters.

Test Scenario 5 Results

This last test scenario is designed to demonstrate something that was mentioned in Chapter

3 when the SNOPP algorithm was introduced. This prediction algorithm does not make use of

any parameters which indicate the nature or model of the data being predicted. Therefore, it

cannot adequately handle discontinuous data. Heading data exhibits this discontinuous behavior

anytime it crosses the -π / π threshold. This test demonstrates the behavior of the polynomial

prediction algorithm when such a discontinuity is encountered. Figure 5-34 shows a plot of the

heading data vs. time. Figure 5-35 shows the same data and included the predicted values for one

second, three seconds and five seconds in the future. Figure 5-36 shows the 1 second error plot

for the same data set. Error analysis results are included in Table 5-9.

81

Before and after the discontinuity point (at approximately 133 Seconds) the polynomial

predictor shows prediction capabilities similar to those observed for other dynamic data sets.

However, one can observe that immediately after the discontinuity point the predictor’s solution

is wildly incorrect. In actuality it predicts values well outside the range of -π to π which is

considered valid for heading values. The effect of this can be seen in both Figure 5-36 (with error

values approaching 12 radians) and Table 5-9 where the average heading error even 1 second in

the future is 0.26 radians but the standard deviation is 0.92 radians. Much of the error and size of

the standard deviation can be attributed to the large errors encountered around the discontinuity

point.

Testing Summary

The test scenarios described in this chapter have highlighted the primary functionality of

the WMVKS. The JAUS message set introduced in chapter 4 has been shown sufficient to

support a large variety of data types and test scenarios. The ability to predict using different

prediction algorithms has also been demonstrated in test scenario 3. Lastly, the polynomial

predictor has been shown to be flexible enough to be used for a large variety of data in the

prediction of future state. It has yielded favorable results in tracking not only objects, but also

attributes as well. The linear prediction method was compared to the polynomial predictor and

shown to yield less favorable results overall and in general provide much less stable behavior

when used to predict future states.

82

ba
Figure 5-1 Laser tracking algorithm. In (a) the orange dot is the seed point while the algorithm

searches and identifies close neighbors in yellow. In (b) the search has been
completed and the object to be tracked is surrounded by the inner bounding box. The
outer bounding box is the estimated future position of the object which has been
grown slightly. At first the object’s velocity vector is unknown so the future position

and current position are coincident.

Figure 5-2 Laser tracking algorithm. The tracked object is highlighted in orange. The current

bounding box is shown in blue which the estimated future position of the object is
shown in green. The estimated velocity vector is also shown.

83

Figure 5-3 The TailGator using the tracking algorithm to follow a lawn tractor. The TailGator

was the only robot at the 2003 Intelligent Ground Vehicle Competition to
successfully complete the course.

Figure 5-4 Laser Tracking Smart Sensor output. Tracked object shown in green with a black

bounding box. Red cells are another non-tracked object. Note the vehicle is located in
the center of the grid and the vehicle heading is indicated by the small blue line
(north-west here).

84

Figure 5-5 Laser Tracking Smart Sensor setup for collection of test data. The NaviGATOR

(blue) is used to track the moving object (white truck) around a large test circuit.

Table 5-1 Scenario 1 Test Plan

Test Description

In this test, an object detected by the LTSS will be inserted into the
WMVKS. The object’s position will be updated by the LTSS while its
future position will be estimated using the polynomial predictor. For
this test, the object will be moving and the robotic platform will be
stationary.

Test Purpose
To show the ability of the WMVKS to reason about and estimate the
future geospatial position of an object using the polynomial predictor
algorithm.

Hypothesis The polynomial predictor will yield favorable tracking of the object’s

future position.

Expected Results
The WMVKS will successfully handle a variety of create, modify and
query messages to facilitate the creation and monitoring of an object
and its future position.

Test Design

For this test, the NaviGATOR is stationary while a truck is driven in
front of it. The LTSS identifies and tracks the truck as it moves across
the sensor’s field of view. The position of the tracked object is updated

in the WMVKS at 10 Hz. The future state of the object is queried at 5
Hz. Each time, the position 1 second, 2 seconds, 3 seconds, 4 seconds
and 5 seconds in the future is queried.

The following configuration values are used in the polynomial
predictor for this test:

Minimum Point Count: 10
Minimum Order: 0
Maximum Order: 3
Window Size: 5

85

Window Count: 20
P-Critical Value: 0.2 (20%)

Logged Data
The estimated position of the tracked object at 1 second, 2 seconds, 3
seconds, 4 seconds and 5 seconds in the future with appropriate
timestamp for each report.

Table 5-2 Scenario 2 Test Plan

Test Description

In this test, an object detected by the LTSS will be inserted into the
WMVKS. The object’s position will be updated by the LTSS while its

future position will be estimated using the polynomial predictor. For
this test, both the object and the robotic platform will be moving. This
test is much longer in length than test 1 and will show a larger variety
in the data set.

Test Purpose
To show the ability of the WMVKS to reason about and estimate the
future geospatial position of an object using the polynomial predictor
algorithm.

Hypothesis The polynomial predictor will yield favorable tracking of the object’s

future position.

Expected Results
The WMVKS will successfully handle a variety of create, modify and
query messages to facilitate the creation and monitoring of an object
and its future position.

Test Design

For this test, the NaviGATOR is following a truck which driven in
front of it. The LTSS identifies and tracks the truck as it moves. The
position of the tracked object is updated in the WMVKS at 10 Hz. The
future state of the object is queried at 5 Hz. Each time, the position 1
second, 2 seconds, 3 seconds, 4 seconds and 5 seconds in the future is
queried.

The following configuration values are used in the polynomial
predictor for this test:

Minimum Point Count: 10
Minimum Order: 0
Maximum Order: 3
Window Size: 5
Window Count: 20
P-Critical Value: 0.2 (20%)

Logged Data
The estimated position of the tracked object at 1 second, 2 seconds, 3
seconds, 4 seconds and 5 seconds in the future with appropriate
timestamp for each report.

86

Table 5-3 Scenario 3 Test Plan

Test Description

In this test, an object detected by the LTSS will be inserted into the
WMVKS. The object’s position will be updated by the LTSS while its

future position will be estimated using the linear predictor. For this test,
both the object and the robotic platform will be moving.

Test Purpose To contrast the difference in results obtained using the polynomial and
linear predictors

Hypothesis The linear predictor will show less optimal prediction capabilities, but
more quickly adjust to trend changes.

Expected Results
The linear prediction algorithm will show less optimal prediction
capabilities, but perform better than the polynomial predictor around
trend changes.

Test Design

For this test, the NaviGATOR is following a truck which driven in
front of it. The LTSS identifies and tracks the truck as it moves. The
position of the tracked object is updated in the WMVKS at 10 Hz. The
future state of the object is queried at 5 Hz. Each time, the position 1
second, 2 seconds, 3 seconds, 4 seconds and 5 seconds in the future is
queried.

The following configuration values are used in the linear predictor for
this test:

Minimum Point Count: 2
Maximum Point Count: 10

Logged Data
The estimated position of the tracked object at 1 second, 2 seconds, 3
seconds, 4 seconds and 5 seconds in the future with appropriate
timestamp for each report.

Table 5-4 Scenario 4 Test Plan

Test Description

In this test, the velocity of the NaviGATOR as it drives some path will
be attached to a point object as a dynamic feature class attribute. Its
value will be updated and its future value will be predicted using the
polynomial predictor.

Test Purpose To show the ability of the WMVKS to reason about and estimate
values for dynamic feature class attributes.

Hypothesis The polynomial predictor will yield favorable tracking of the velocity
value.

Expected Results
The WMVKS will successfully handle a variety of create, modify and
query messages to facilitate the creation and monitoring of a feature
class attribute and its future state.

87

Test Design

For this test, the NaviGATOR’s velocity value is updated in the

WMVKS at 10 Hz. The future state of the value is queried at 5 Hz.
Each time, the position 1 second, 2 seconds, 3 seconds, 4 seconds and 5
seconds in the future is queried.

The following configuration values are used in the polynomial
predictor for this test:

Minimum Point Count: 10
Minimum Order: 0
Maximum Order: 3
Window Size: 5
Window Count: 20
P-Critical Value: 0.2 (20%)

Logged Data
The estimated position of the tracked object at 1 second, 2 seconds, 3
seconds, 4 seconds and 5 seconds in the future with appropriate
timestamp for each report.

Table 5-5 Scenario 5 Test Plan

Test Description

In this test, the heading of the NaviGATOR as it drives will be attached
to a point object as a dynamic feature class attribute. Its value will be
updated and its future state will be predicted using the polynomial
predictor.

Test Purpose To show the behavior of the polynomial predictor when estimating the
value of a non-continuous signal.

Hypothesis The polynomial predictor will exhibit poor tracking for discontinuous
signals.

Expected Results
The polynomial predictor will reasonably predict the heading value
between discontinuity points. However at the points of discontinuity
the predictor will have very large errors.

Test Design

For this test, the NaviGATOR’s heading value is updated in the

WMVKS at 10 Hz. The future state of the value is queried at 5 Hz.
Each time, the position 1 second, 2 seconds, 3 seconds, 4 seconds and 5
seconds in the future is queried.

The following configuration values are used in the polynomial
predictor for this test:

Minimum Point Count: 10
Minimum Order: 0
Maximum Order: 3
Window Size: 5

88

Window Count: 20
P-Critical Value: 0.2 (20%)

Logged Data
The estimated position of the tracked object at 1 second, 2 seconds, 3
seconds, 4 seconds and 5 seconds in the future with appropriate
timestamp for each report.

Table 5-6 Error analysis of test scenario 2

Easting
(meters)

Northing
(meters)

Combined
(meters)

1 Second
Average 0.676 0.600 1.276
Standard Deviation (σ) 0.967 1.372 1.892
2*σ 1.935 2.744 3.784

2 Seconds
Average 1.423 1.236 2.659
Standard Deviation (σ) 2.071 2.740 4.011
2*σ 4.141 5.480 8.022

3 Seconds
Average 2.479 2.102 4.581
Standard Deviation (σ) 3.682 4.556 6.924
2*σ 7.365 9.111 13.849

4 Seconds
Average 3.856 3.171 7.027
Standard Deviation (σ) 5.834 6.761 10.561
2*σ 11.668 13.523 21.122

5 Seconds
Average 5.516 4.454 9.971
Standard Deviation (σ) 8.495 9.351 14.890
2*σ 16.989 18.702 29.781

Table 5-7 Error analysis of test scenario 3

Easting
(meters)

Northing
(meters)

Combined
(meters)

1 Second
Average 1.553 0.891 2.444
Standard Deviation (σ) 1.472 1.086 2.008
2*σ 2.944 2.172 4.016

2 Seconds
Average 3.051 1.762 4.813
Standard Deviation (σ) 2.820 2.151 3.876
2*σ 5.640 4.302 7.751

3 Seconds
Average 4.696 2.743 7.440
Standard Deviation (σ) 4.274 3.375 5.943
2*σ 8.549 6.750 11.887

4 Seconds
Average 6.537 3.837 10.374
Standard Deviation (σ) 5.911 4.762 8.311
2*σ 11.821 9.525 16.621

5 Seconds
Average 8.553 5.027 13.580
Standard Deviation (σ) 7.688 6.252 10.921
2*σ 15.376 12.504 21.842

89

Table 5-8 Error analysis of test scenario 4

Speed
(Meters per Sec)

1 Second
Average 0.376
Standard Deviation (σ) 0.397
2*σ 0.794

2 Seconds
Average 0.584
Standard Deviation (σ) 0.625
2*σ 1.250

3 Seconds
Average 0.811
Standard Deviation (σ) 0.892
2*σ 1.783

4 Seconds
Average 1.067
Standard Deviation (σ) 1.210
2*σ 2.419

5 Seconds
Average 1.354
Standard Deviation (σ) 1.585
2*σ 3.169

Table 5-9 Error analysis of test scenario 5

Heading
(radians)

1 Second
Average 0.265
Standard Deviation (σ) 0.915
2*σ 1.831

2 Seconds
Average 0.419
Standard Deviation (σ) 1.494
2*σ 2.987

3 Seconds
Average 0.587
Standard Deviation (σ) 2.199
2*σ 4.398

4 Seconds
Average 0.777
Standard Deviation (σ) 3.045
2*σ 6.091

5 Seconds
Average 0.983
Standard Deviation (σ) 4.026
2*σ 8.051

90

Figure 5-6 Easting vs. Northing Plot for Test Scenario 1.

0

50

100

150

200

0 50 100 150 200

N
o

rt
h

in
g

 (
m

)

Easting (m)

91

Figure 5-7 Easting and Northing vs. Time Plot for Test Scenario 1.

0

50

100

150

200

250

74

76

78

80

82

84

86

88

0 2 4 6 8 10 12 14 16

N
o

rt
h

in
g

 (
m

)

E
a

s
ti

n
g

 (
m

)

Time (sec)

Easting Northing

92

Figure 5-8 Easting vs. Time Plot with Prediction Values for Test Scenario 1.

74

76

78

80

82

84

86

88

0 2 4 6 8 10 12 14 16

E
a

s
ti

n
g

 (
m

)

Time (sec)

Easting 1 Sec Prediction
3 Sec Prediction 5 Sec Prediction

93

Figure 5-9 Northing vs. Time with Prediction Values for Test Scenario 1.

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

N
o

rt
h

in
g

 (
m

)

Time (sec)

Northing 1 Sec Prediction
3 Sec Prediction 5 Sec Prediction

94

Figure 5-10 Easting vs. Northing with Prediction Values for Test Scenario 1.

0

50

100

150

200

0 50 100 150 200

N
o

rt
h

in
g

 (
m

)

Easting (m)

Object Track 1 Sec Prediction

3 Sec Prediction 5 Sec Predictor

95

Figure 5-11 Easting vs. Northing for Test Scenario 2.

Easting vs. Northing

Test Scenario 2

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500

Easting (m)

N
o

rt
h

in
g

(m
)

96

Figure 5-12 Easting and Northing vs. Time plot for Test Scenario 2.

Easting and Northing vs Time

Test Scenario 2

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

Ea
st

in
g

(m
)

0

100

200

300

400

500

N
o

rt
h

in
g

(m
)

Northing Easting

97

Figure 5-13 Easting vs. Time Plot for Test Scenario 2. Boxes correspond to close-ups of data which are shown in figures 5-14, 5-15

and 5-16 respectively.

Easting vs Time with Prediction Values

Test Scenario 2

0

100

200

300

400

500

0 20 40 60 80 100 120 140 160 180 200

Time (seconds)

Ea
st

in
g

(m
)

Easting 1 Sec Prediction

3 Sec Prediction 5 Sec Prediction

5-14

5-15

5-16

98

Figure 5-14 Easting vs. Time with prediction values for test scenario 2. Close up of time period 44-64 seconds.

Easting vs Time with Prediction Values

Test Scenario 2

465

475

485

495

505

515

44 46 48 50 52 54 56 58 60 62 64

Time (seconds)

Ea
st

in
g

(m
)

Easting 1 Sec Prediction

3 Sec Prediction 5 Sec Prediction

99

Figure 5-15 Easting vs. Time with prediction values for test scenario 2. Close up of time period 120-140 seconds.

Easting vs Time with Prediction Values

Test Scenario 2

45

55

65

75

85

95

120 122 124 126 128 130 132 134 136 138 140

Time (seconds)

Ea
st

in
g

(m
)

Easting 1 Sec Prediction

3 Sec Prediction 5 Sec Prediction

100

Figure 5-16 Easting vs. Time with prediction values for test scenario 2. Close up of time period 168-188 seconds.

Easting vs Time with Prediction Values

Test Scenario 2

290

300

310

320

330

340

168 170 172 174 176 178 180 182 184 186 188

Time (seconds)

Ea
st

in
g

(m
)

Easting 1 Sec Prediction

3 Sec Prediction 5 Sec Prediction

101

Figure 5-17 Northing vs. Time with prediction values for Test Scenario 2.

Northing vs Time with Predictor Values

Test Scenario 2

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

N
o

rt
h

in
g

 (
m

)

Northing 1 Sec Prediction
3 Sec Prediction 5 Sec Prediction

5-18

5-19

102

Figure 5-18 Northing vs. Time with prediction values for Test Scenario 2. Close up of time period 30-90 seconds.

Northing vs Time with Predictor Values

Test Scenario 2

120

130

140

150

160

170

180

190

30 40 50 60 70 80 90

Time (sec)

N
o

rt
h

in
g

 (
m

)

Northing 1 Sec Prediction
3 Sec Prediction 5 Sec Prediction

103

Figure 5-19 Northing vs. Time with prediction values for Test Scenario 2. Close up of time period 125-155 seconds.

Northing vs Time with Predictor Values

Test Scenario 2

0

5

10

15

20

25

30

35

40

125 130 135 140 145 150 155

Time (sec)

N
o

rt
h

in
g

 (
m

)

Northing 1 Sec Prediction
3 Sec Prediction 5 Sec Prediction

104

Figure 5-20 Easting Error vs. Time for test scenario 2.

0

100

200

300

400

500

0 20 40 60 80 100 120 140 160 180 200

Time (seconds)

E
a
s
ti

n
g

 (
m

)

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

E
rr

o
r

(m
)

Easting 1 Sec Prediction 1 Sec Error

105

Figure 5-21 Northing Error vs. Time for test scenario 2.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

Time (seconds)

N
o

rt
h

in
g

 (
m

)

-12

-8

-4

0

4

8

12

E
rr

o
r

(m
)

Northing 1 Sec Prediction 1 Sec Error

106

Figure 5-22 Easting vs. Time with prediction values for test scenario 3. Close up plots of critical sections are provided in figures

5-23, 5-24 and 5-25 as shown.

Easting vs. Time

Test Scenario 3

0

100

200

300

400

500

0 20 40 60 80 100 120 140 160 180 200

Time (seconds)

E
a

s
ti

n
g

 (
m

)

Easting 1 Sec Prediction
3 Sec Prediction 5 Sec Prediction

5-23

5-24

5-25

107

Figure 5-23 Easting vs. Time with prediction values for test scenario 3. Close up of time period 44-64 seconds.

Easting vs. Time

Test Scenario 3

465

475

485

495

505

515

44 46 48 50 52 54 56 58 60 62 64

Time (seconds)

E
a

s
ti

n
g

 (
m

)

Easting 1 Sec Prediction
3 Sec Prediction 5 Sec Prediction

108

Figure 5-24 Easting vs. Time with prediction values for test scenario 3. Close up of time period 120-140 seconds.

Easting vs. Time

Test Scenario 3

45

55

65

75

85

95

120 122 124 126 128 130 132 134 136 138 140

Time (seconds)

E
a

s
ti

n
g

 (
m

)

Easting 1 Sec Prediction
3 Sec Prediction 5 Sec Prediction

109

Figure 5-25 Easting vs. Time with prediction values for test scenario 3. Close up of time period 168-188 seconds.

Easting vs. Time

Test Scenario 3

290

300

310

320

330

340

168 170 172 174 176 178 180 182 184 186 188

Time (seconds)

E
a
s
ti

n
g

 (
m

)

Easting 1 Sec Prediction
3 Sec Prediction 5 Sec Prediction

110

Figure 5-26 Northing vs. Time with predicted values for test scenario 3. Close ups of highlighted areas are provided in figures 5-27

and 5-28 as indicated.

Northing vs. Time

Test Scenario 3

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

Time (seconds)

N
o

rt
h

in
g

 (
m

)

Northing 1 Sec Prediction
3 Sec Prediction 5 Sec Prediction

5-27

5-28

111

Figure 5-27 Northing vs. Time with predicted values for test scenario 3. Close up of time period 32-95 seconds.

Northing vs. Time

Test Scenario 3

120

130

140

150

160

170

180

190

32 42 52 62 72 82 92

Time (seconds)

N
o

rt
h

in
g

 (
m

)

Northing 1 Sec Prediction
3 Sec Prediction 5 Sec Prediction

112

Figure 5-28 Northing vs. Time with predicted values for test scenario 3. Close up of time period 125-155 seconds.

Northing vs. Time

Test Scenario 3

0

5

10

15

20

25

30

35

40

125 130 135 140 145 150 155

Time (seconds)

N
o

rt
h

in
g

 (
m

)

Northing 1 Sec Prediction
3 Sec Prediction 5 Sec Prediction

113

Figure 5-29 Easting Error vs. Time for test scenario 3.

0

100

200

300

400

500

0 20 40 60 80 100 120 140 160 180 200

Time (seconds)

E
a
s
ti

n
g

 (
m

)

-10

-8

-6

-4

-2

0

2

4

6

8

10

E
rr

o
r

(m
)

Easting 1 Sec Prediction 1 Sec Error

114

Figure 5-30 Northing Error vs. Time for test scenario 3.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

Time (seconds)

N
o

rt
h

in
g

 (
m

)

-10

-8

-6

-4

-2

0

2

4

6

8

10

E
rr

o
r

(m
)

Northing 1 Sec Predictor 1 Sec Error

115

Figure 5-31 Velocity vs. Time plot for test scenario 4.

Velocity vs. Time

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

V
e

lo
c

it
y

 (
M

e
te

rs
 p

e
r

S
e

c
)

116

Figure 5-32 Velocity vs. Time plot with prediction values for test scenario 4.

Velocity vs. Time

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

V
e
lo

c
it

y
 (

M
e
te

rs
 p

e
r

S
e
c
)

117

Figure 5-33 Error vs Time for test scenario 4.

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200

Time (s)

V
e
lo

c
it

y
 (

M
p

s
)

-3

-2

-1

0

1

2

3

E
rr

o
r

(M
p

s
)

Velocity 1 Sec Predictor 1 Sec Error

118

Figure 5-34 Heading vs. Time plot for test scenario 5.

Heading vs. Time

-3.2

-2.8

-2.4

-2

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

H
e

a
d

in
g

 (
ra

d
ia

n
s

)

119

Figure 5-35 Heading vs. Time plot with prediction values for test scenario 5

Heading vs. Time

Test Scenario 5

-3.2

-2.8

-2.4

-2

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

H
e

a
d

in
g

 (
ra

d
ia

n
s

)

Heading 1 Sec Prediction
3 Sec Prediction 5 Sec Predictor

120

Figure 5-36 Error vs. Time plot for test scenario 5.

-3.2

-2.8

-2.4

-2

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

H
e

a
d

in
g

 (
ra

d
ia

n
s
)

-12

-8

-4

0

4

8

12

E
rr

o
r

(r
a

d
ia

n
s
)

Vehicle Heading 1 Sec Predictor 1 Sec Error

121

CHAPTER 6
FUTURE WORK AND CONCLUSIONS

This dissertation has outlined the author’s work to create a centralized knowledge store

capable of providing advanced capabilities in coping with the storage and querying of dynamic

information. Previous chapters have dealt with the specifics of the knowledge store, its

implementation and some preliminary results. In this chapter, the author discusses opportunities

for future work in the area and a summary of the dissertation and its contributions to the robotics

community as a whole.

Future Work

The author’s work has focused on the problem of storing and querying dynamic

information in a centralized knowledge store. However, there are a variety of other interesting

challenges in the realm of world modeling which are still to be addressed. A significant problem

is that of a common taxonomy by which features and objects in the knowledge store can be

understood. A main goal of the JAUS architecture is to promote interoperability amongst robotic

platforms and between vendors. By adopting a common language and set of features, the

information stored in one robot may be more readily understood and used by another.

This alludes to another significant challenge. That is of knowledge store synchronization.

In a future world populated by hundreds if not thousands of autonomous and semi-autonomous

robotic platforms, sharing information between those platforms will be necessary for success.

World Modeling and geospatial information in general have significant challenges when trying

to combine information from multiple sources. Questions especially arise when two vehicles

have visited the same location but have differing interpretations. Or when visiting a place

previously visited by another platform and having a system’s sensors interpreting the

122

environment differently. Who to trust and why become significant questions which must be

answered.

The dynamic world model implemented and tested has shown the basic capabilities to

handle a large variety of time-variant data. Most of the author’s results are based on the

Statistics-Based Nth Order Polynomial Predictor which was introduced. However, this estimation

technique does not take into account any constraints which may be known about the data set.

Other, more complex, estimation techniques can be implemented which may yield better results

when applied to a specific data set. One technique which holds some promise is to combine state

estimation with other knowledge available in the knowledge store; this is often done in the

moving objects database field. For example, a vehicle, in most cases, travels along a specific

roadway. If knowledge of a road network is available within the knowledge store, the specific

geometry of that road a vehicle is on can be used to constrain the solution from the estimator.

Other information that may be useful to state estimation techniques is the location of any objects

or obstacles and the location of other known robots in the case of a multi-robot system. Other

estimation techniques, such as Kalman filters or neural networks, may benefit from more

information about the nature of the dataset. For example, while the polynomial predictor shows

good results for most of the object-tracking problem, it does exhibit large errors around changes

in the data trends. Objects which move more rapidly or in tighter quarters could demonstrate

even more sudden changes. Using a model-based approach might yield better results in these

environments through an understanding of the underlying dynamics of the system. This could

allow the estimator to anticipate the future state based on the current state and the realm of

possible or probable inputs to the system.

123

The polynomial predictor implemented by the author has areas for future improvement as

well. One of the greatest strengths of the author’s approach is the predictor’s ability to be applied

to a large variety of time-variant data. Due to a lack of assumptions about the data or its

behavior, the polynomial predictor works by observing the trend of a data set and

extrapolating an assumption that a given trend will continue for some future time period.

However, several key areas in the identification of the appropriate future trend could be

improved upon. First, it is hypothesized that the use of the configuration parameters window size

and window count could be done away with. Rather than iterate on the data set looking for an

appropriate history size, some method could be devised to identify the exact spot in the history to

which a polynomial should be fit. The author attempted to solve this same problem by examining

the time derivative of the data looking for local minimum and maximum points to indicate

significant change in the data. This approach did not yield favorable results for the author, but

may still be valid. Other approaches investigated but not test by the author were statistics based

to find some point at which the data shows a significant change or variation in trend.

Another key part of the polynomial predictor algorithm is the evaluation of different

solutions. With the current approach of analyzing a number of different “windows,” the one with

the lowest order is selected as discussed previously. The reason the lowest order polynomial is

selected is because higher-order polynomials tend to exhibit much larger errors when used for

extrapolation. However, it is possible that these higher order polynomials might provide better

estimation around trend changes, because they address the nonlinearity of the data at those points.

Therefore it is hypothesized that some other metric for the evaluation of the appropriate solution

could be used and yield better results than the current method.

124

The current implementation of the dynamic world model does not provide any reasoning or

analysis of the estimator solutions. Rather, the solution, as found by a prediction algorithm, is

reported as-is. Many times this is the proper behavior. However, some form of oversight or

regulation functionality could provide added value to the system. For example, while an object

may move hundreds of meters through the course of its observed behavior, it is very often not

going to do so instantaneously, or near-instantaneously. The capability in the world model to

detect situations where a prediction has a high likelihood of being incorrect could either prevent

those situations or at least inform a client that such an error may exist. Similar capabilities could

(and perhaps should) be implemented in the prediction algorithms themselves, however building

this into the primary world model framework would provide basic oversight to all prediction

methods deployed.

Similarly, the current implementation requires that the client which generates the data

identify the estimation technique to be used with a particular data set. Nontheless, no verification

of the appropriateness of the selected technique is done. Adding the ability for the knowledge

store to analyze or monitor the accuracy of the estimator, in real-time, may allow the knowledge

store to alert clients that make use of that data when an inappropriate or significantly bad

estimation technique is being used. Another approach may be to put the onus on the world model

to select an appropriate estimation technique from a collection automatically. This would still

allow for a large variety of techniques to be deployed for use, but exactly which method to use

would be selected by the knowledge store using some criterion or other intelligent reasoning

algorithm.
Conclusion

These ideas are only the tip of the iceberg for the future of world modeling. As the

capabilities and expectations of robotic systems grow, the need for more accurate and powerful

125

knowledge about the world around the system grows with it. Each new mission holds unique

challenges which robotic engineers must solve.

This dissertation has presented the author’s work in developing a new and novel approach

to storing and querying the state of dynamic information. It began with some background

motivation and a simple problem statement. The world is moving, and the robots in it need to be

capable of dealing with dynamic constraints. In Chapter 2, background literature is presented

which covers a range of topics from motion planning to spatial databases. Chapter 3 outlined the

author’s novel architecture used to solve various spatiotemporal problems. Also, included in

Chapter 3 is a technical discussion of a unique new approach to estimating future state of a

continuous time-variant function which works in real-time without a priori knowledge of the

function or any system models. Chapter 4 provides details on the author’s implementation of this

solution and Chapter 5 discusses some results obtained through 5 test scenarios.

While the author’s work has focused on the tracking and prediction of moving objects as

observed by some sensing component, the architecture presented should be capable of handling a

large variety of objects and attributes, any of which may be dynamic and changing. The work

presented herein provides the start to a whole new series of challenges and solutions that may

help propel autonomous and semi-autonomous vehicles out of science fiction and into the real

world.

126

APPENDIX A
JAUS WORLD MODEL MESSAGE SET

To support the author’s research, the existing JAUS World Model Vector Knowledge Store

message set needed to be modified to include a number of additional fields and parameters. Also,

a number of new messages needed to be implemented to take full advantage of the new

architecture. What follows is a listing of the complete message set, including pre-existing JAUS

messages and any messages created or changed by the author.

Local Data Types:

 JAUS Vector Object
Input Messages:

 Code F021h: Set Vector Knowledge Store Feature Class Metadata
 Code F023h: Terminate Vector Knowledge Store Data Transfer
 Code F120h: Request Vector Knowledge Store Object ID Block
 Code F121h: Create Vector Knowledge Store Object(s)
 Code F122h: Modify Vector Knowledge Store Object(s)
 Code F123h: Delete Vector Knowledge Store Object(s)
 Code F130h: Query Vector Knowledge Store Object(s)
 Code F131h: Query Vector Knowledge Store Feature Class Metadata
 Code F132h: Query Vector Knowledge Store Geospatial Bounds
 Code F133h: Query Vector Knowledge Store Temporal Bounds
 Code F134h: Query Vector Knowledge Store Object(s) Future State

Output Messages:

 Code F320h: Assign Vector Knowledge Store Object ID Block

 Code F321h: Report Vector Knowledge Store Object(s) Creation

 Code F322h: Report Vector Knowledge Store Object(s) Modification

 Code F323h: Report Vector Knowledge Store Object(s) Deletion

 Code F330h: Report Vector Knowledge Store Objects

 Code F331h: Report Vector Knowledge Store Feature Class Metadata

 Code F332h: Report Vector Knowledge Store Geospatial Bounds

 Code F333h: Report Vector Knowledge Store Temporal Bounds

 Code F334h: Report Vector Knowledge Store Object(s) Future State

 Code F424h: Report Vector Knowledge Store Data Transfer Termination

127

JAUS Vector Object

Most of the Vector Knowledge Store messages deal with the transport or modification of

geospatial objects and their attributes. To that end, the author has modified the messages to

include a new concept in JAUS, a local data type. The local data type, a Vector Object, consists

of a series of message fields which are constant anytime the data type is used. Near future work

in JAUS is to implement the complete message set in XML and one feature of the proposed

XML schema is to support this kind of defined and reusable local data types. Another unique

feature of the Vector Object is that is makes use of a local presence vector. While presence

vectors have been used extensively in the JAUS message set in the past, never have they been

used to control looping chunks of dynamic code. The Vector Object Presence Vector defines

which fields are present in an individual Vector Object just as it would for a message. Table A-1

shows the Vector Object fields.

Code F021h: Set Vector Knowledge Store Feature Class Metadata

The Code F021h: Set Vector Knowledge Store Feature Class Metadata message allows the

creation, modification, or deletion of feature class metadata. The format of these metadata is not

specified. It is left to the system designer to develop a convention for doing this. Initially these

data are to be used by the human operators. In the future a convention may be established. Table

A-2 shows the fields contained in this message.

Code F023h: Terminate Vector Knowledge Store Data Transfer

The Code F023h: Terminate Vector Knowledge Store Data Transfer message is a

command class message that shall cause the vector knowledge store to immediately terminate the

transfer of all current and outstanding data destined to the requesting component. Upon

termination, the vector knowledge store shall send the requestor the Code F424h: Report Vector

Knowledge Store Data Transfer Termination message.

128

Code F120h: Request Vector Knowledge Store Object ID Block

The Code F120: Request Vector Knowledge Store Object Id Block message is used to

request a collection of unique (and continuous) object ids. The knowledge store will attempt to

set aside the requested block side object IDs for use only by the requesting component. This

allows a component to assign ids to objects itself and guarantee there will not be a conflict in the

knowledge store. Table A-3 shows the fields contained in this message.

Code F121h: Create Vector Knowledge Store Object(s)

The Code F121h: Create Vector Knowledge Store Objects message is used to add objects

to the Vector Knowledge Store. This message allows multiple vector objects to be created using

a single message. Field 1 of this message is the creation message properties. If bit zero is set,

then the knowledge store shall return the Code F321h: Report Vector Knowledge Store Object(s)

Creation message with the local request identifier specified in Field 2. Field 3 indicates the

number of vector objects included in the message. Field 4 is the beginning of the definition of a

single vector object. Each vector object is defined as outlined above in the Vector Object local

data type. Table A-4 shows the fields contained in this message.

Code F122h: Modify Vector Knowledge Store Object(s)

The Code F122h: Modify Vector Knowledge Store Objects message is used to modify

existing objects in the Vector Knowledge Store. This message allows multiple vector objects to

be modified using a single message. Field 1 of this message is the message properties. If bit zero

is set, then the knowledge store shall return the Code F322h: Report Vector Knowledge Store

Object(s) Modification message with the local request identifier specified in Field 2. Field 3

indicates the number of vector objects included in the message. Field 4 is the beginning of the

definition of a single vector object. Each vector object is defined as outlined above in the Vector

129

Object local data type. Note that in this message, the Object Id field of each Vector Object is not

optional and must be included. Table A-5 shows the fields contained in this message.

Code F123h: Delete Vector Knowledge Store Object(s)

The Code F123h: Delete Vector Knowledge Store Object(s) message is used by a

requesting component to delete objects from the Vector Knowledge Store. This message allows

for a large number of objects to be removed from the knowledge store. It specifies the objects for

removal in one of three ways; specific object ID, object attributes or deletion region. Table A-6

shows the fields contained in this message.

Code F131h: Query Vector Knowledge Store Feature Class Metadata

The Code F131h: Query Vector Knowledge Store Feature Class Metadata message shall

cause the Vector Knowledge Store to reply to the requestor with the Code F331h: Report Vector

Knowledge Store Feature Class Metadata message with the requested data. There is a single field

associated with this message. This field specifies the feature class metadata to return in the

reply. There is also an option to return metadata for all feature classes present in the queried

vector knowledge store. Table A-7 shows the fields contained in this message.

Code F130h: Query Vector Knowledge Store Object(s)

The Code F130h: Query Vector Knowledge Store Objects message allows the access to

objects within the vector knowledge store. Table A-8 shows the fields contained in this message.

Code F132h: Query Vector Knowledge Store Geospatial Bounds

The Code 2A22h: Query Vector Knowledge Store Geospatial Bounds message is used to

request the spatial extents of a single feature class or of all feature classes within a vector

knowledge store. The knowledge store shall respond with the Code 4A23h: Report Vector

Knowledge Store Geospatial Bounds message. The boundary is represented by two points which

130

represent the rectangular region that just covers all of the data within the feature class layer or

layers. Table A-9 shows the fields contained in this message.

Code F133h: Query Vector Knowledge Store Temporal Bounds

The Code F133h: Query Vector Knowledge Store Temporal Bounds message is used to

request the temporal extents of a single feature class or of all feature classes within a vector

knowledge store. The knowledge store shall respond with the Code F433h: Report Vector

Knowledge Store Temporal Bounds message. Table A-10 shows the fields contained in this

message.

Code F134h: Query Vector Knowledge Store Object Future State

The Code F134h: Query Vector Knowledge Store Object Future State message shall cause

the Vector Knowledge Store to reply to the requestor with the Code F334h: Report Vector

Knowledge Store Object Future State message with the requested data. Note: Relative Time is a

time difference from the time the Vector Knowledge Store receives the message. Table A-11

shows the fields contained in this message.

Code F320h: Assign Vector Knowledge Store Object ID Block

The Code F320h: Assign Vector Knowledge Store Object Id Block message shall be sent

by the knowledge store in response to a Code F120h: Request Vector Knowledge Store Object ID

Block message. It contains the Local Request ID of the originating request, along with the upper

and lower object ID blocks. This block is considered continuous between the two bounds

returned. Values given are inclusive. Table A-12 shows the fields contained in this message.

Code F321h: Report Vector Knowledge Store Object(s) Creation

The Code F321h: Report Vector Knowledge Store Object Creation message is used to

confirm creation of objects in the vector knowledge store. This message is sent only when an

object creation message is requested by setting bit zero in the Code F121h: Create Vector

131

Knowledge Store Object message. If this bit is set, this message will be transmitted and the local

request identifier (field 1) is set to the value sent with the Code F121h: Create Vector Knowledge

Store Object message. Table A-13 shows the fields contained in this message.

Code F322h: Report Vector Knowledge Store Object(s) Modification

The Code F322h: Report Vector Knowledge Store Object(s) Modification message is used

to confirm modification of the specified objects in the vector knowledge store. This message is

only sent when confirmation is requested in the Code F122h: Modify Vector Knowledge Store

Object(s) message. The local request identifier is the one included in the original modification

message. Each object included in the modification is reported on with a success or failure of the

request. Table A-14 shows the fields contained in this message.

Code F323h: Report Vector Knowledge Store Object(s) Deletion

The Code F323h: Report Vector Knowledge Store Object(s) Deletion message is used to

confirm deletion of objects from the vector knowledge store. This message is only sent when

confirmation is requested in the Code F123h: Delete Vector Knowledge Store Object(s)

message. The local request identifier is the one included in the original message. The object ID

of each object removed from the knowledge store is returned. The deletion result field is used to

indicate success or failure of the overall deletion request and indicates failure if the original

request was improper in any form. Table A-15 shows the fields contained in this message.

Code F330h: Report Vector Knowledge Store Objects

The Code F330h: Report Vector Knowledge Store Objects message is sent in direct

response to a Code F130h: Query Vector Knowledge Store Objects message. Table A-16 shows

the fields contained in this message.

132

Code F331h: Report Vector Knowledge Store Feature Class Metadata

The Code F331h: Report Vector Knowledge Store Feature Class Metadata message allows

access to feature class metadata stored within the vector knowledge store. It is transferred in

response to the Code F131h: Query Vector Knowledge Store Feature Class Metadata message. If

the query message requests all feature classes, a separate message shall be sent for each feature

class. These metadata are entered using the Code F021h: Set Vector Knowledge Store Feature

Class Metadata message. Table A-17 shows the fields contained in this message.

Code F332h: Report Vector Knowledge Store Geospatial Bounds

The Code F332h: Report Vector Knowledge Store Geospatial Bounds message format is

shown below. This message reports the bounds as a response to the Query Vector Knowledge

Store Bounds message. In this message, the knowledge store returns the two geographic points

that represent the extents of the data within a feature class layer or all feature class layers. Table

A-18 shows the fields contained in this message.

Code F333h: Report Vector Knowledge Store Temporal Bounds

The Code F333h: Report Vector Knowledge Store Temporal Bounds message format is shown

below. This message reports the bounds as a response to the Query Vector Knowledge Store

Temporal Bounds message. Table A-19 shows the fields contained in this message.

Code F334h: Report Vector Knowledge Store Object(s) Future State

The Code F334h: Report Vector Knowledge Store Object(s) Future State message is sent

in response to a Code F134h: Query Vector Knowledge Store Object Future State message. It

includes the objects for which the future state was queried along with the results. Table A-20

shows the fields contained in this message.

133

Code F424h: Report Vector Knowledge Store Data Transfer Termination

The Code F424h: Report Vector Knowledge Store Data Transfer Termination message notifies

other JAUS components that data that were being transferred or were going to be transferred to

them has been stopped. This message is sent in response to the Code F023h: Terminate Vector

Knowledge Store Data Transfer message. It is also sent whenever data transfer is interrupted due

to a change in the component state.

134

Table A-1 JAUS Vector Object Mapping
Field # Name Type Units Interpretation PV Bit #

 Object Presence
Vector

Short See
Mapping

Bit Field (See column for
Object PV Mapping)

 Object ID Unsigned
Integer

N/A 0x00000000 – Reserved
0

 Object Type Byte N/A Enumeration
0: Point
1: Line
2: Polygon
3 – 255: Reserved

 Object Buffer Float Meters 1

 Object
Estimation Type

Byte N/A Enumeration
0: Static
1 – 254: Algorithm Id
255: Reserved

2

 Object Feature
Class Count (m)

Unsigned
Short
Integer

N/A Note: If this field is Presence
Vectored out, it will be
assumed to be equal to 1

3

 Object Feature
Class 1 Id

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - By
implementation.
65,535 – Reserved

 Object Feature
Class 1
Estimation Type

Byte N/A Enumeration
0: Static
1 – 254: Algorithm Id
255: Reserved

4

 Object Feature
Class 1 Attribute
Data Type

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7: Float
8: Long Float
9: RGB (3 Bytes)
10 – 255: Reserved

 Object Feature
Class 1 Attribute
Value Count (n)

Unsigned
Integer

N/A Note: If this field is Presence
Vectored out, it will be
assumed to be equal to 1

5

 Object Feature
Class 1 Attribute
Value 1

Byte Percentage 0-100% confidence in the
attribute value 6

135

Field # Name Type Units Interpretation PV Bit #

Confidence
Value

 Object Feature
Class 1 Attribute
Value 1

Varies
(see field
4)

Varies with
Feature
Class

 Object Feature
Class 1 Attribute
Value 1 Lower
Bound

Varies
(see field
4)

Varies with
Feature
Class

Used to provide a lower
bound to the estimated
Attribute Value

7

 Object Feature
Class 1 Attribute
Value 1 Upper
Bound

Varies
(see field
4)

Varies with
Feature
Class

Used to provide an upper
bound to the estimated
Attribute Value

7

 Object Feature
Class 1 Attribute
Value 1 Time
Stamp

Unsigned
Integer

N/A Bits 0-9: milliseconds,
range 0...999

Bits 10-15: Seconds, range
0...59

Bits 16 – 21: Minutes, range
0...59

Bits 22-26: Hour (24 hour
clock), range 0..23

Bits 27-31: Day, range 0...31

8

 … … … …

 Object Feature
Class 1 Attribute
Value n
Confidence
Value

Byte Percentage 0-100% confidence in the
attribute value

6

 Object Feature
Class 1 Attribute
Value n

Varies
(see field
4)

Varies with
Feature
Class

 Object Feature
Class 1 Attribute
Value n Lower
Bound

Varies
(see field
4)

Varies with
Feature
Class

Used to provide a lower
bound to the estimated
Attribute Value

7

 Object Feature
Class 1 Attribute
Value n Upper
Bound

Varies
(see field
4)

Varies with
Feature
Class

Used to provide an upper
bound to the estimated
Attribute Value

7

 Object Feature
Class 1 Attribute
Value n Time
Stamp

Unsigned
Integer

N/A Bits 0-9: milliseconds,
range 0...999
Bits 10-15: Seconds, range
0...59
Bits 16 – 21: Minutes, range

8

136

Field # Name Type Units Interpretation PV Bit #

0...59
Bits 22-26: Hour (24 hour
clock), range 0..23
Bits 27-31: Day, range 0...31

 … … … …

 Object Feature
Class m Id

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - By
implementation.
65,535 – Reserved

 Object Feature
Class m
Estimation Type

Byte N/A Enumeration
0: Static
1 – 254: Algorithm Id
255: Reserved

4

 Object Feature
Class m
Attribute Data
Type

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7: Float
8: Long Float
9: RGB (3 Bytes)
10 – 255: Reserved

 Object Feature
Class m
Attribute Value
Count (n)

Unsigned
Integer

N/A Note: If this field is Presence
Vectored out, it will be
assumed to be equal to 1

5

 Object Feature
Class m
Attribute Value
1 Confidence
Value

Byte Percentage 0-100% confidence in the
attribute value

6

 Object Feature
Class m
Attribute Value
1

Varies
(see field
4)

Varies with
Feature
Class

 Object Feature
Class m
Attribute Value
1 Lower Bound

Varies
(see field
4)

Varies with
Feature
Class

Used to provide a lower
bound to the estimated
Attribute Value

7

 Object Feature
Class m
Attribute Value

Varies
(see field
4)

Varies with
Feature
Class

Used to provide an upper
bound to the estimated
Attribute Value

7

137

Field # Name Type Units Interpretation PV Bit #

1 Upper Bound

 Object Feature
Class m
Attribute Value
1 Time Stamp

Unsigned
Integer

N/A Bits 0-9: milliseconds,
range 0...999

Bits 10-15: Seconds, range
0...59

Bits 16 – 21: Minutes, range
0...59

Bits 22-26: Hour (24 hour
clock), range 0..23

Bits 27-31: Day, range 0...31

8

 … … … …

 Object Feature
Class m
Attribute Value
n Confidence
Value

Byte Percentage 0-100% confidence in the
attribute value

6

 Object Feature
Class m
Attribute Value
n

Varies
(see field
4)

Varies with
Feature
Class

 Object Feature
Class m
Attribute Value
n Lower Bound

Varies
(see field
4)

Varies with
Feature
Class

Used to provide a lower
bound to the estimated
Attribute Value

7

 Object Feature
Class m
Attribute Value
n Upper Bound

Varies
(see field
4)

Varies with
Feature
Class

Used to provide an upper
bound to the estimated
Attribute Value

7

 Object Feature
Class m
Attribute Value
n Time Stamp

Unsigned
Integer

N/A Bits 0-9: milliseconds,
range 0...999

Bits 10-15: Seconds, range
0...59

Bits 16 – 21: Minutes, range
0...59

Bits 22-26: Hour (24 hour
clock), range 0..23

Bits 27-31: Day, range 0...31

8

 Object Position
Count (r)

Unsigned
Integer

N/A Note: If this field is
Presence Vectored out, it
will be assumed to be equal
to 1

9

 Object Position 1
Time Stamp

Unsigned
Integer

N/A Bits 0-9: milliseconds,
range 0...999

10

138

Field # Name Type Units Interpretation PV Bit #

Bits 10-15: Seconds, range
0...59

Bits 16 – 21: Minutes, range
0...59

Bits 22-26: Hour (24 hour
clock), range 0..23

Bits 27-31: Day, range 0...31

 Object Position 1
Confidence
Value

Byte N/A 0-100% confidence in the
position values 11

 Number of
Points for Object
Position 1 (p)

Unsigned
Short
Integer

N/A

 Object Position 1
Point 1 Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

 Object Position 1
Point 1
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

 Object Position 1
Point 1 Lower
Bound Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

12

 Object Position 1
Point 1 Lower
Bound
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180 12

 Object Position 1
Point 1 Upper
Bound Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

12

 Object Position 1
Point 1 Upper
Bound
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180 12

 … … … …

 Object Position 1
Point p Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

 Object Position 1
Point p
Longitude

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

139

Field # Name Type Units Interpretation PV Bit #

(WGS84)

 Object Position 1
Point p Lower
Bound Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

12

 Object Position 1
Point p Lower
Bound
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180 12

 Object Position 1
Point p Upper
Bound Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

12

 Object Position 1
Point p Upper
Bound
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180 12

 … … … …

Object Position r
Time Stamp

Unsigned
Integer

N/A Bits 0-9: milliseconds,
range 0...999

Bits 10-15: Seconds, range
0...59

Bits 16 – 21: Minutes, range
0...59

Bits 22-26: Hour (24 hour
clock), range 0..23

Bits 27-31: Day, range 0...31

10

 Object Position r
Confidence
Value

Byte N/A 0-100% confidence in the
position values 11

 Number of
Points for Object
Position r (p)

Unsigned
Short
Integer

N/A

 Object Position r
Point 1 Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

 Object Position r
Point 1
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

 Object Position r
Point 1 Lower
Bound Latitude

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

12

140

Field # Name Type Units Interpretation PV Bit #

(WGS84)

 Object Position r
Point 1 Lower
Bound
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180 12

 Object Position r
Point 1 Upper
Bound Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

12

 Object Position r
Point 1 Upper
Bound
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180 12

 … … … …

 Object Position r
Point p Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

 Object Position r
Point p
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

 Object Position r
Point p Lower
Bound Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

12

 Object Position r
Point p Lower
Bound
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180 12

 Object Position r
Point p Upper
Bound Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

12

 Object Position r
Point p Upper
Bound
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180 12

141

Table A-2 Code F021h: Set Vector Knowledge Store Feature Class Metadata
Field # Name Type Units Interpretation

1 Metadata Options Byte N/A Enumeration
0: Append
1: Prepend
2: Overwrite
3 – 254: Reserved
255: Erase All

2 Feature Class Unsigned Short
Integer

N/A Enumeration
0 … 65,534 - By implementation.
65,535 – Reserved

3 Number of String
Characters

Unsigned Short
Integer

N/A 0 … 65,535

This field should be equal to zero
only when Field 1 is equal to 255
(Erase All)

4 Feature Class
Metadata

String N/A Variable length string

Table A-3 Code F023h: Request Vector Knowledge Store Object ID Block
Field # Name Type Units Interpretation

1 Local Request ID Byte N/A The local request id is used to
identify the response to this message
to the originating component.

2 Requested Block
Size

Unsigned
Integer

N/A The number of unique object ids
being requested.

Table A-4 Code F120h: Create Vector Knowledge Store Object(s)
Field # Name Type Units Interpretation

1 Message
Properties

Byte N/A Bit Field
0: Request confirmation of
 object creation
1 – 7: Reserved

2 Local Request
ID

Byte N/A Request identifier to be used when
returning confirmation to requesting
component

3 Number of
Objects (n)

Unsigned
Short Integer

 0, reserved
1 … 65,535

4 Vector Object 1 JAUS Vector
Object

N/A This is a series of fields which follow the
outline given for a JAUS Vector Object.
Again, each object has a unique presence
vector.

… … … …

3 + n Vector Object n JAUS Vector
Object

N/A This is a series of fields which follow the
outline given for a JAUS Vector Object.

142

Field # Name Type Units Interpretation

Again, each object has a unique presence
vector.

Table A-5 Code F122h: Modify Vector Knowledge Store Object(s)
Field # Name Type Units Interpretation

1 Message
Properties

Byte N/A Bit Field
0: Request confirmation of object
modification
1 – 7: Reserved

2 Local Request
ID

Byte N/A Request identifier to be used when
returning confirmation to requesting
component

3 Number of
Objects (n)

Unsigned Short
Integer

 0, reserved
1 … 65,535

4 Vector Object 1 JAUS Vector
Object

N/A This is a series of fields which follow
the outline given for a JAUS Vector
Object. Again, each object has a unique
presence vector.

 … … … …

3 + n Vector Object n JAUS Vector
Object

N/A This is a series of fields which follow
the outline given for a JAUS Vector
Object. Again, each object has a unique
presence vector.

Table A-6 Code F123h: Delete Vector Knowledge Store Object(s)
Field # Name Type Units Interpretation PV Bit #

1 Presence
Vector

Byte N/A See mapping column.

2 Local
Request ID

Byte N/A Request identifier to be used when
returning data to requesting component

3 Number of
Object IDs
(p)

Unsigned
Short
Integer

N/A 1

4 Object ID 1 Unsigned
Integer

N/A 1

 … … … …

3+p Object ID p Unsigned
Integer

N/A 1

4+p Deletion
Region

JAUS
Vector
Object

N/A JAUS Vector Object which defines the
region in which objects can be deleted.
Also can specify the feature classes and
attribute values which may be deleted.

2

143

Table A-7 Code F130h: Query Vector Knowledge Store Object(s)
Field # Name Type Units Interpretation PV Bit #

1 Presence
Vector

Unsigned
Short

N/A See mapping column

2 Response
Presence
Vector

Byte N/A Query Response Presence Vector.

See Code F330h: Report Vector
Knowledge Store Objects message
for Presence Vector format.

3 Local
Request
ID

Byte N/A Request identifier to be used when
returning data to requesting
component

4 History
Size

Unsigned
Integer

N/A Bits 0-9: milliseconds, range 0...999

Bits 10-15: Seconds, range 0...59

Bits 16 – 21: Minutes, range 0...59

Bits 22-26: Hour (24 hour clock),
range 0..23

Bits 27-31: Day, range 0...31

0

5 Number
of Object
IDs (p)

Unsigned
Short
Integer

N/A 1

6 Object ID
1

Unsigned
Integer

N/A 1

… … … … …

5+p Object ID
p

Unsigned
Integer

N/A 1

6+p Object
Estimation
Type

Byte N/A Enumeration
0: Static
1 – 254: Algorithm Id
255: All but Static

2

7+p Region
Type

Byte N/A Enumeration
0: Point
1: Line
2: Polygon
3 – 255: Reserved

3

8+p Region
Buffer

Float Meters 4

9+p Number
of Feature
Classes
(n)

Byte N/A 5

10+p Feature
Class 1

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - By implementation.
65,535 – All

6

144

Field # Name Type Units Interpretation PV Bit #

11+p Feature
Class 1
Estimation
Type

Byte N/A Enumeration
0: Static
1 – 254: Algorithm Id
255: All but Static

7

12+p Feature
Class 1
Attribute
Data Type

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7: Float
8: Long Float
9: RGB (3 Bytes)
10 – 255: Reserved

8

13+p Feature
Class
Attribute
1

Varies
(see field
4)

Varies
with
Feature
Class

 8

 … … … …

10+p+3n Feature
Class n

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - By implementation.
65,535 – All

6

11+p+3n Feature
Class n
Estimation
Type

Byte N/A Enumeration
0: Static
1 – 254: Algorithm Id
255: All but Static

7

12+p+3n Feature
Class n
Attribute
Data Type

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7: Float
8: Long Float
9: RGB (3 Bytes)
10 – 255: Reserved

8

13+p+3n Feature
Class
Attribute
n

Varies
(see
previous
field)

Varies
with
Feature
Class

 8

14+p+3n Number
of Region

Unsigned
Short

N/A 0, reserved
1 … 65,535

9

145

Field # Name Type Units Interpretation PV Bit #

Points (m) Integer

15+p+3n Query
Region
Point 1
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

9

16+p+3n Query
Region
Point 1
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

9

 … … … …
 Query

Region
Point m
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

9

 Query
Region
Point m
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

9

Table A-8 Code F131h: Query Vector Knowledge Store Feature Class Metadata
Field # Name Type Units Interpretation

1 Feature Class Unsigned Short
Integer

N/A Enumeration
0 … 65,534 - By implementation.
65,535 – All

Table A-9 Code F132h: Query Vector Knowledge Store Geospatial Bounds
Field # Name Type Units Interpretation

1 Local
Request
ID

Byte N/A Request identifier to be used when returning
data to requesting component

2 Feature
Class

Unsigned
Short Integer

N/A Enumeration
0 … 65,534 - By implementation.
65,535 – All Feature Classes

Table A-10 Code F133h: Query Vector Knowledge Store Temporal Bounds
Field # Name Type Units Interpretation

1 Local
Request ID

Byte N/A Request identifier to be used when returning data
to requesting component

2 Feature
Class

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - By implementation.
65,535 – All Feature Classes

146

Table A-11 Code F134h: Query Vector Knowledge Store Object(s) Future State
Field # Name Type Units Interpretation PV Bit #
1 Presence

Vector
Byte N/A See mapping column

2 Local Request
ID

Byte N/A Request identifier to be used
when returning data to
requesting component

3 Query Type Byte N/A Enumeration
0: Absolute Time
1: Relative Time
2 – 255: Reserved

4 Query Time Unsigned
Integer

N/A Bits 0-9: milliseconds, range
0...999
Bits 10-15: Seconds, range
0...59
Bits 16 – 21: Minutes, range
0...59
Bits 22-26: Hour (24 hour
clock), range 0..23
Bits 27-31: Day, range 0...31

5 Object ID Unsigned
Integer

N/A

6 Object
Confidence
Value

Byte Percent Interpretation:
95 would be a 95%
Confidence Interval
(i.e. α=0.05)

1

7 Number of
Feature
Classes (m)

Unsigned
Short
Integer

N/A

8 Feature
Class 1

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 – By
implementation.
65,535 – All

9 Feature
Class 1
Confidence
Interval
Percentage

Byte Percent Interpretation:
95 would be a 95%
Confidence Interval
(i.e. α=0.05)

2

 … … …

7 + m Feature
Class m

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - By
implementation.

147

Field # Name Type Units Interpretation PV Bit #
65,535 – All

7 +
2m

Feature
Class m
Confidence
Interval
Percentage

Byte Percent Interpretation:
95 would be a 95%
Confidence Interval
(i.e. α=0.05)

Table A-12 Code F320h: Assign Vector Knowledge Store Object ID Block
Field # Name Type Units Interpretation

1 Local Request ID Byte N/A Request identifier sent by
requesting component

2 Object ID Block
Lower Bound

Unsigned
Integer

N/A Allocated Object ID block,
lower bound

3 Object ID Block
Upper Bound

Unsigned
Integer

N/A Allocated Object ID block,
upper bound

Table A-13 Code F321h: Report Vector Knowledge Store Object(s) Creation
Field # Name Type Units Interpretation

1 Local Request ID Byte N/A Local request identifier sent by creating
component

2 Number of
Object IDs (p)

Unsigned
Short Integer

N/A

3 Object ID 1 Unsigned
Integer

 0x00000000 Invalid Object ID This value is
used to inform the remote component that, for
some reason, the corresponding object could
not be created.

 … … … …

2+p Object ID p Unsigned
Integer

 0x00000000 Invalid Object ID This value is
used to inform the remote component that, for
some reason, the corresponding object could
not be created.

Table A-14 Code F322h: Report Vector Knowledge Store Object(s) Modification
Field # Name Type Units Interpretation

1 Local Request ID Byte N/A Local request identifier sent by creating
component

2 Number of
Object IDs (p)

Unsigned
Short Integer

N/A

3 Object ID 1 Unsigned
Integer

N/A Unique Object ID of the object modified

4 Object 1
Modification
Result

Byte N/A Enumeration:
0: Failure
1: Success
2-255: Reserved

148

Field # Name Type Units Interpretation

… … … … …

2+p Object ID p Unsigned
Integer

N/A Unique Object ID of the object modified

3+p Object p
Modification
Result

 N/A Enumeration:
0: Failure
1: Success
2-255: Reserved

Table A-15 Code F323h: Report Vector Knowledge Store Object(s) Deletion
Field # Name Type Units Interpretation

1 Local Request ID Byte N/A Local request identifier sent by creating
component

2 Deletion Result Byte N/A Enumeration:
0: Failure
1: Success
2-255: Reserved

3 Number of
Object IDs (p)

Unsigned
Short Integer

N/A This being equal to 0 does not necessarily
indicate a failure, as a proper deletion
request may still yield 0 objects deleted

4 Object ID 1 Unsigned
Integer

N/A Unique Object ID of the object deleted

… … … … …

3+p Object ID p Unsigned
Integer

N/A Unique Object ID of the object deleted

Table A-16 Code F330h: Report Vector Knowledge Store Object(s)
Field # Name Type Units Interpretation PV Bit #

1 Presence
Vector

Byte N/A Bit Field:
Bit 0: Data is included after field 3.

This is based on the presence
vector received in the Code
F130h: Query Vector
Knowledge Store Objects
Message. If data are present
after field 3, this bit should be
set.

Bits 1-7: Reserved

2 Local
Request ID

Byte N/A Request identifier sent in query
message

3 Number of
Objects (p)

Unsigned
Short
Integer

N/A Number of Objects in Response to
Query Message

4 History
Size

Unsigned
Integer

N/A Bits 0-9: milliseconds, range 0...999
Bits 10-15: Seconds, range 0...59
Bits 16 – 21: Minutes, range 0...59

1

149

Field # Name Type Units Interpretation PV Bit #

Bits 22-26: Hour (24 hour clock),
range 0..23
Bits 27-31: Day, range 0...31

5 Object 1 JAUS
Vector
Object

N/A JAUS Vector Object that matches the
originating query

1

 … … …

4+p Object p JAUS
Vector
Object

N/A JAUS Vector Object that matches the
originating query

1

Table A-17 Code F331h: Report Vector Knowledge Store Object(s)
Field # Name Type Units Interpretation

1 Feature Class Unsigned Short
Integer

N/A Enumeration

0 … 65,534 – By
implementation.
65,535 – Reserved

2 Number of String
Characters

Unsigned Short
Integer

N/A

3 Feature Class
Metadata

String N/A Variable length string

Table A-18 Code F332h: Report Vector Knowledge Store Geospatial Bounds
Field # Name Type Units Interpretation

1 Local Request
ID

Byte N/A Request identifier sent in query
message

2 Feature Class Unsigned Short
Integer

N/A Enumeration
0 … 65,534 – By implementation.
65,535 – Reserved

3 Southwest
Bound
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

4 Southwest
Bound
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

5 Northeast
Bound
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

6 Northeast
Bound
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

150

Table A-19 Code F333h: Report Vector Knowledge Store Temporal Bounds
Field # Name Type Units Interpretation

1 Local Request
ID

Byte N/A Request identifier sent in query
message

2 Feature Class Unsigned Short
Integer

N/A Enumeration

0 … 65,534 – By implementation.
65,535 – Reserved

3 Time Stamp Unsigned Integer N/A

Bits 0-9: milliseconds, range 0...999
Bits 10-15: Seconds, range 0...59
Bits 16 – 21: Minutes, range 0...59
Bits 22-26: Hour (24 hour clock), range
0..23
Bits 27-31: Day, range 1...31

4 Date Stamp Unsigned Short N/A

Bits 0-4: Day, range 1...31
Bits 5-8: Month, range 1...12
Bits 9 – 15: Year, range 2000...2127
Where 0 is 2000, 1 is 2001, etc.

Table A-20 Code F334h: Report Vector Knowledge Store Object(s) Future State
Field # Name Type Units Interpretation PV Bit #

1 Local
Request ID

Byte N/A Request identifier sent in query
message

2 Number of
Objects (p)

Unsigned Short
Integer

N/A Number of Objects in Response to
Query Message

3 Object 1 JAUS Vector
Object

N/A JAUS Vector Object that matches
the originating query

1

 … … …

2+p Object p JAUS Vector
Object

N/A JAUS Vector Object that matches
the originating query

1

151

APPENDIX B
SAMPLE CODE EXCERPTS

This appendix contains selections from of the code written by the author to test the

reference implementation in the World Model Vector Knowledge Store (WMVKS). Functions

and data structures are included based on their overall importance to key features of the

implementation.

JAUS Vector Object

The JAUS Vector object is implemented as four distinct objects –

JausWorldModelVectorObject, JausWorldModelFeatureClass,

JausWorldModelFeatureClassAttribute and JausWorldModelSpatialDataSet. The structures are

defined below:

// JausWorldModelVectorObject

typedef struct

{

 JausUnsignedInteger id; // Unique Object Id

 JausShortPresenceVector presenceVector; // Unique (per-object)

// presence vector for fields

 JausByte type; // Enumeration, see above

 JausFloat bufferMeters; // Buffer Size in meters

 JausByte estimator; // Enumeration, see above

 Vector featureClasses; // Dynamic Array of FeatureClass data

 Vector geospatialData; // Dynamic Array of VectorDatasets

// (position history)

}JausWorldModelVectorObject;

// JausWorldModelFeatureClass

typedef struct

{

 JausUnsignedShort id; // Enumeration, defined by system

 // String of Metadata information defined for this Feature Class

 char metaData[JAUS_WM_FC_METADATA_STRING_LENGTH];

// Enumeration, defined as the type of estimation algorithm to be used

// (0=Static, 1-254=Dynamic, 255=Reserved)

JausByte estimator;

// List of Feature Class Attributes: Data Type and values

 Vector attributeHistory;

// List of Feature Class Attributes Lower Bound Values

 Vector ciLowerHistory;

152

// List of Feature Class Attributes Upper Bound Values

Vector ciUpperHistory;

}JausWorldModelFeatureClass;

// JausWorldModelFeatureClassAttribute

 typedef struct

{

 JausByte dataType; // Enumeration, see above

 JausTime timeStamp; // OPTIONAL: Valid time for this FC Attribute

 JausByte confidenceValue; // OPTIONAL: Confidence value or confidence

// interval value (0-100%)

 FeatureClassAttributeValue current; // Attribute Value

 FeatureClassAttributeValue lowerBound; // OPTIONAL: Lower Bound

 FeatureClassAttributeValue upperBound; // OPTIONAL: Upper Bound

}JausWorldModelFeatureClassAttribute;

// JausWorldModelVectorObjectSpatialDataSet

typedef struct

{

 JausTime timeStamp; // OPTIONAL: Timestamp for this reading

 PointLla centroid; // Centroid of this dataset

 JausByte confidenceValue; // OPTIONAL: confidence interval

 Vector dataPoints; // PointLLAs in this dataset (Lat & Lon)

 Vector ciUpperPoints; // OPTIONAL: PointLLAs - Confidence

// Interval UpperBounds Points

 Vector ciLowerPoints; // OPTIONAL: PointLLAs - Confidence

// Interval LowerBounds Points

}JausWorldModelVectorObjectSpatialDataSet;

Generic Predictor

These structures are used throughout the code to store intermediate results of queries and

reports as they are marshaled from the database to the JAUS messages and vice-versa. In the

text, the Generic Predictor Interface is discussed. Below is the datastructure of this

implementation. Also provided is a sample of the generic toBuffer method and the polynomial

predictor’s toBuffer solution.

Generic Predictor Structure

// Generic Predictor

typedef struct GenericPredictorStruct

{

 // Unique Name

 char name[80];

 // Estimator numeric id

 unsigned int id;

153

 // some optimization parameters

 unsigned long minimumPointCount;

 unsigned long maximumPointCount;

 // Current data

 DataPoint *dataArray;

 unsigned long dataSize;

 // Generic handles to Predictor functions

 int (* solver)(struct GenericPredictorStruct *);

 double (* estimate)(struct GenericPredictorStruct *, double);

 int (* solutionToBuffer)(struct GenericPredictorStruct *,

unsigned char *buffer, unsigned int bufferSizeBytes);

 int (* solutionFromBuffer)(struct GenericPredictorStruct *,

unsigned char *buffer, unsigned int bufferSizeBytes);

 void (* destroy)(struct GenericPredictorStruct *);

 // Placeholder pointer for specific predictor data

 void *solutionStruct;

}GenericPredictorStruct;

Generic Predictor ToBuffer Method

// Generic Predictor To Buffer

int genericPredictorSolutionToBuffer(GenericPredictor predictor,

unsigned char *buffer, unsigned int bufferSizeBytes)

{

 unsigned int index = 0;

 // Pack some predictor values

 // The reason we are packing the estimator id is for idetification

// later. Because, depending on the dataSize, the object->estimator

// does not necessarily equal estimator id

 memcpy(buffer+index, &predictor->id, sizeof(unsigned int));

 index += sizeof(unsigned int);

 // Pack the solution struct

 index += predictor->solutionToBuffer(predictor, buffer+index,

bufferSizeBytes-index);

 return index;

}

Polynomial Predictor ToBuffer Method

// Polynomial Predictor toBuffer

int polyEstimatorSolutionToBuffer(GenericPredictor polyEst, unsigned char

*buffer, unsigned int bufferSizeBytes)

{

 // We are going to store 3 things: power, beta, and startX

 // This allows us to quickly and easily use the estimator

 unsigned int index = 0;

 PolyEstimatorSolution sol = NULL;

 unsigned int sizeBytes = 0;

 sol = (PolyEstimatorSolution) polyEst->solutionStruct;

154

 if(!sol)

 {

 // Bad Pointer

 return 0;

 }

 sizeBytes = ((sol->power+1) * sizeof(double)) + sizeof(int) +

sizeof(double) + sizeof(unsigned int);

 if(bufferSizeBytes < sizeBytes)

 {

 // This is a problem, not enough space in the buffer

 return 0;

 }

 // Power

 memcpy(buffer+index, &sol->power, sizeof(int));

 index += sizeof(int);

 // startX

 memcpy(buffer+index, &sol->startX, sizeof(double));

 index += sizeof(double);

 // Betas

 memcpy(buffer+index, sol->beta, (sol->power+1) * sizeof(double));

 index += (sol->power+1) * sizeof(double);

 return index;

}

Process JAUS Messages

Three particular messages define the behavior of the WMVKS. These are the create,

modify and query future state messages. The functions that process these JAUS messages are

included below.

Create Objects Message

// Process Create

JausBoolean processCreateVksObjectsMessage(JausMessage message)

{

 CreateVksObjectsMessage create = NULL;

 ReportVksObjectsCreationMessage response = NULL;

 JausMessage txMessage = NULL;

 JausWorldModelVectorObject object = NULL;

 unsigned int i = 0;

 unsigned int j = 0;

 int queryResult = 0;

 char tempQuery[4096] = {0};

 char *sqlQuery = NULL;

155

 create = createVksObjectsMessageFromJausMessage(message);

 if(!create)

 {

 cError("processCreateVksObjectsMessage:%d: Oops.\n", __LINE__);

 return JAUS_FALSE;

 }

 if(jausBytePresenceVectorIsBitSet(create->messageProperties,

VKS_CREATE_PROPERTIES_CONFIRMATION_BIT))

 {

 // Confirmation requested

 response = reportVksObjectsCreationMessageCreate();

 response->source->id = wmvks->address->id;

 response->destination->id = create->source->id;

 response->requestId = create->requestId;

 response->objectCount = create->vectorObjects->elementCount;

 response->objectIds = (JausUnsignedInteger *)

malloc(response->objectCount * JAUS_UNSIGNED_INTEGER_SIZE_BYTES);

 }

 // Insert Objects into the Data Store

 for(i = 0; i < create->vectorObjects->elementCount; i++)

 {

 object = (JausWorldModelVectorObject)

create->vectorObjects->elementData[i];

 if(!jausShortPresenceVectorIsBitSet(object->presenceVector,

JAUS_WM_OBJECT_PV_OBJECT_ID_BIT))

 {

 // if the object ID bit is not set, we need to retrive the

// next value from the id_seq so that we can set it to that

 sprintf(tempQuery, "SELECT NEXTVAL('%s_objectid_seq');",

objectTableName);

 postgresDbQuery(tempQuery);

 object->id =

atoi(postgresDbGetResultValueByColumnName(0, "nextval"));

jausShortPresenceVectorSetBit(&object->presenceVector,

JAUS_WM_OBJECT_PV_OBJECT_ID_BIT);

 }

 sqlQuery = createCreateObjectSql(object);

 queryResult = postgresDbQuery(sqlQuery);

 // done with sqlQuery, so free it

 free(sqlQuery);

 for(j = 0; j < object->featureClasses->elementCount; j++)

 {

 sqlQuery = createCreateFeatureClassSql(

object->featureClasses->elementData[j], object->id);

 queryResult = postgresDbQuery(sqlQuery);

 // done with sqlQuery, so free it

 free(sqlQuery);

 }

156

 if(jausBytePresenceVectorIsBitSet(create->messageProperties,

VKS_CREATE_PROPERTIES_CONFIRMATION_BIT))

 {

 // Capture Object Id

 if(queryResult == 0)

 {

 // Successfully Inserted

 if(jausShortPresenceVectorIsBitSet(object->presenceVector,

JAUS_WM_OBJECT_PV_OBJECT_ID_BIT))

 {

 response->objectIds[i] = object->id;

 }

 else

 {

 sprintf(tempQuery, "SELECT CURRVAL('%s_objectid_seq');",

objectTableName);

 postgresDbQuery(tempQuery);

 response->objectIds[i] =

atoi(postgresDbGetResultValueByColumnName(0, "currval"));

 }

 objectCount++;

 }

 else

 {

 // Unsuccessful

 response->objectIds[i] = 0;

 }

 }

 }

 // Respond if requested

 if(jausBytePresenceVectorIsBitSet(create->messageProperties,

VKS_CREATE_PROPERTIES_CONFIRMATION_BIT))

 {

txMessage = reportVksObjectsCreationMessageToJausMessage(response);

 nodeManagerSend(wmvksNmi, txMessage);

 jausMessageDestroy(txMessage);

 reportVksObjectsCreationMessageDestroy(response);

 }

 createVksObjectsMessageDestroy(create);

 return JAUS_TRUE;

}

Modify Object Message

// Process Modify

JausBoolean processModifyVksObjectMessage(JausMessage message)

{

 ModifyVksObjectMessage modifyMsg = NULL;

 JausWorldModelVectorObject dbObject = NULL;

 JausWorldModelVectorObject msgObject = NULL;

 JausWorldModelVectorObjectSpatialDataSet dataSet = NULL;

157

 char *sqlQuery = NULL;

 char *hexString = NULL;

 int queryResult = 0;

 unsigned int i = 0;

 unsigned int j = 0;

 char *dataBuffer = NULL;

 unsigned int dataSizeBytes;

 JausWorldModelFeatureClass msgFeatureClass = NULL;

 JausWorldModelFeatureClass dbFeatureClass = NULL;

 JausWorldModelFeatureClassAttribute msgFcAttribute = NULL;

 JausWorldModelFeatureClassAttribute dbFcAttribute = NULL;

 modifyMsg = modifyVksObjectMessageFromJausMessage(message);

 if(!modifyMsg)

 {

 cError("processModifyVksObjectMessage:%d: Problem unpacking

modifyMsg\n", __LINE__);

 return JAUS_FALSE;

 }

 // For convience, let's grab that object pointer from the message

 msgObject = modifyMsg->vectorObject;

 // Allocate memory for sqlQuery

 sqlQuery = (char *) calloc(1, 1024);

 // Now, we want to get the object (if it exists) from the dataBase

 sprintf(sqlQuery, "SELECT vectorobject FROM %s WHERE objectid=%d;",

objectTableName, msgObject->id);

 queryResult = postgresDbQuery(sqlQuery);

 free(sqlQuery);

 // Check the results for errors

 if(queryResult != 0 || postgresDbGetResultCount() < 1)

 {

 cError("processModifyVksObjectMessage:%d: Problem with modify.

Object (id=%d) not found in dataBase.\n", __LINE__, msgObject->id);

 modifyVksObjectMessageDestroy(modifyMsg);

 return JAUS_FALSE;

 }

 // Great! Now we take that object and start comparing

 // Get the objectArray so we can create a vector Object

 hexString = postgresDbGetResultValueByColumnName(0, "vectorObject");

 if(!hexString)

 {

 cError("processModifyVksObjectMessage:%d: Problem extracting

hexString.\n", __LINE__);

 modifyVksObjectMessageDestroy(modifyMsg);

 return JAUS_FALSE;

 }

 // Now convert our hexString to a VectorObject

 dbObject = vectorObjectFromHexString(hexString);

158

 if(!dbObject)

 {

 cError("processModifyVksObjectMessage:%d: Problem extracting

dbObject.\n", __LINE__);

 modifyVksObjectMessageDestroy(modifyMsg);

 return JAUS_FALSE;

 }

 // Ok, now we can compare the objects and update parts of the database

// as needed. First let's compare the object types, if the Object Type

// has changed, this could be a big problem. For now, if the type has

// changed, we'll just throw an error since interpreting what to do is

// complicated and unnecessary for this implementation

 if(dbObject->type != msgObject->type)

 {

 cError("processModifyVksObjectMessage:%d: Problem extracting

dbObject.\n", __LINE__);

 vectorObjectDestroy(dbObject);

 modifyVksObjectMessageDestroy(modifyMsg);

 return JAUS_FALSE;

 }

 // Now, if this is a "static" object, we need to replace the

// geospatialData

 if(msgObject->estimator == JAUS_WM_ESTIMATOR_STATIC)

 {

 // Destroy the dbObject data, we're replacing it

 vectorDestroy(dbObject->geospatialData,

(void *) vectorObjectDataSetDestroy);

 // Clone the dataSet (should only be one if static) from msgObject

 if(msgObject->geospatialData->elementCount > 1)

 {

 cLog("processModifyVksObjectMessage:%d: WARNING... trying

to modify a static object and providing more than one set of data

points.\n");

 }

 dbObject->geospatialData = vectorCopy(msgObject->geospatialData,

(void *) vectorObjectDataSetCopy,

(void *) vectorObjectDataSetDestroy);

 if(!dbObject->geospatialData)

 {

 cError("processModifyVksObjectMessage:%d: Problem cloning

msgObject->geospatialData.\n", __LINE__);

 vectorObjectDestroy(dbObject);

 modifyVksObjectMessageDestroy(modifyMsg);

 return JAUS_FALSE;

 }

 }

 else

 {

 // Else.... dynamic object

 // We need to add the data in the msgObject to the dbObject

 if(msgObject->geospatialData->elementCount > 1)

 {

 cLog("processModifyVksObjectMessage:%d: WARNING... trying

159

to modify an object and providing more than one set

of data points.\n");

 }

 for(i = 0; i < msgObject->geospatialData->elementCount; i++)

 {

 // BIG WARNING HERE... You REALLY should only modify with one

// dataset. If we put in duplicate data sets, it could cause big

// problems for some estimator algorithms. (I think)

dataSet = vectorObjectDataSetCopy(

(JausWorldModelVectorObjectSpatialDataSet)

msgObject->geospatialData->elementData[i]);

 if(!dataSet)

 {

 cError("processModifyVksObjectMessage:%d: Problem cloning

dataset.\n", __LINE__);

 vectorObjectDestroy(dbObject);

 modifyVksObjectMessageDestroy(modifyMsg);

 return JAUS_FALSE;

 }

 vectorAdd(dbObject->geospatialData, dataSet);

 }

 }

 // Now that our geometry is straight, we should update the geometry object

// in the dataBase. Note: The geometry object in the db is only the last

// known true geometry of the object

 hexString = vectorObjectToPostgisGeometryHexString(dbObject);

 if(!hexString)

 {

 cError("createCreateObjectSql:%d: Problem with

vectorObjectToHexBuffer!\n", __LINE__);

 vectorObjectDestroy(dbObject);

 modifyVksObjectMessageDestroy(modifyMsg);

 return JAUS_FALSE;

 }

 // Allocate memory for sqlQuery

 sqlQuery = (char *) calloc(1, 1024);

 sprintf(sqlQuery, "UPDATE %s SET geom = 'srid=-1; %s'::geometry WHERE

objectid = %d;", objectTableName, hexString, dbObject->id);

 queryResult = postgresDbQuery(sqlQuery);

 // We're done with this, so free it

 free(hexString);

 free(sqlQuery);

 // Test the result of the query

 if(queryResult != 0)

 {

 cLog("processModifyVksObjectMessage:%d: WARNING... Error when trying to

update geometry for object (ID=%).\n", dbObject->id);

 }

 // Object Type test & update

 if(dbObject->type != msgObject->type)

 {

160

 dbObject->type = msgObject->type;

 // Allocate memory for sqlQuery

 sqlQuery = (char *) calloc(1, 1024);

 sprintf(sqlQuery, "UPDATE %s SET object_type = %d WHERE objectid=%d;",

objectTableName, dbObject->type, dbObject->id);

 queryResult = postgresDbQuery(sqlQuery);

 free(sqlQuery);

 }

 // Buffer_meters test & update

 if(jausShortPresenceVectorIsBitSet(msgObject->presenceVector,

JAUS_WM_OBJECT_PV_BUFFER_BIT) && dbObject->bufferMeters !=

msgObject->bufferMeters)

 {

 jausShortPresenceVectorSetBit(&dbObject->presenceVector,

JAUS_WM_OBJECT_PV_BUFFER_BIT);

 dbObject->bufferMeters = msgObject->bufferMeters;

 // Allocate memory for sqlQuery

 sqlQuery = (char *) calloc(1, 1024);

 sprintf(sqlQuery, "UPDATE %s SET buffer_meters = %f WHERE

objectid=%d;", objectTableName, dbObject->bufferMeters,

dbObject->id);

 queryResult = postgresDbQuery(sqlQuery);

 free(sqlQuery);

 }

 // Estimator test & update

 if(jausShortPresenceVectorIsBitSet(msgObject->presenceVector,

JAUS_WM_OBJECT_PV_OBJECT_ESTIMATOR_BIT) && dbObject->estimator !=

msgObject->estimator)

 {

 cLog("processModifyVksObjectMessage:%d: WARNING... Changing the

estimator might have strange consequences.\n", __LINE__);

 jausShortPresenceVectorSetBit(&dbObject->presenceVector,

JAUS_WM_OBJECT_PV_OBJECT_ESTIMATOR_BIT);

 dbObject->estimator = msgObject->estimator;

 // Allocate memory for sqlQuery

 sqlQuery = (char *) calloc(1, 1024);

 sprintf(sqlQuery, "UPDATE %s SET estimator = %d WHERE objectid=%d;",

objectTableName, dbObject->estimator, dbObject->id);

 queryResult = postgresDbQuery(sqlQuery);

 free(sqlQuery);

 }

 // Object TimeStamp

 // We're going to ASSUME the object timestamp has changed

 dataSet = (JausWorldModelVectorObjectSpatialDataSet)

dbObject->geospatialData->elementData

[dbObject->geospatialData->elementCount-1];

 // Allocate memory for sqlQuery

 sqlQuery = (char *) calloc(1, 1024);

 sprintf(sqlQuery, "UPDATE %s SET object_timestamp = '%s' WHERE

161

objectid=%d;", objectTableName,

jausTimeToSqlString(dataSet->timeStamp), dbObject->id);

 queryResult = postgresDbQuery(sqlQuery);

 free(sqlQuery);

 // OK... now we need to update featureClasses

 // A couple notes here... first, if a feature class does not match one

// that is already attached to the object, we just add it. Second, if it

// does match, we update the information with the latest attribute value.

// Remember to test if the FC Attribute is static or not

 for(i = 0; i < msgObject->featureClasses->elementCount; i++)

 {

 msgFeatureClass = (JausWorldModelFeatureClass)

msgObject->featureClasses->elementData[i];

 for(j = 0; j < dbObject->featureClasses->elementCount; j++)

 {

 dbFeatureClass = (JausWorldModelFeatureClass)

dbObject->featureClasses->elementData[j];

 if(msgFeatureClass->id == dbFeatureClass->id)

 {

 // ok, we found it the match

 break;

 }

 dbFeatureClass = NULL;

 }

 if(dbFeatureClass != NULL)

 {

 // This is an existing featureClass

 // Let's check some things (like dataType)

 msgFcAttribute = (JausWorldModelFeatureClassAttribute)

msgFeatureClass->attributeHistory->elementData[0];

 dbFcAttribute = (JausWorldModelFeatureClassAttribute)

dbFeatureClass->attributeHistory->elementData[0];

 if(dbFcAttribute->dataType != msgFcAttribute->dataType)

 {

 cError("processModifyVksObjectMessage:%d: No-no! You cannot

change the dataType of a feature class!\n", __LINE__);

 continue;

 }

 // Test and update the FC Estimator

 if(jausShortPresenceVectorIsBitSet(msgObject->presenceVector,

JAUS_WM_OBJECT_PV_FC_ESTIMATOR_BIT) &&

msgFeatureClass->estimator != dbFeatureClass->estimator)

 {

 cLog("processModifyVksObjectMessage:%d: WARNING... Changing the

estimator might have strange consequences.\n", __LINE__);

 jausShortPresenceVectorSetBit(&dbObject->presenceVector,

JAUS_WM_OBJECT_PV_FC_ESTIMATOR_BIT);

 dbFeatureClass->estimator = msgFeatureClass->estimator;

 }

162

 if(dbFeatureClass->estimator == JAUS_WM_ESTIMATOR_STATIC)

 {

 // Static featureClass attribute

 // Therefore replace the value in dbFeatureClass with the one

// from msgFeatureClass. Destroy the dbFeatureClass data, we're

// replacing it

 vectorDestroy(dbFeatureClass->attributeHistory,

(void *) featureClassAttributeDestroy);

 // Clone the dataSet (should only be one if static)

// from msgObject

 if(msgFeatureClass->attributeHistory->elementCount > 1)

 {

 cLog("processModifyVksObjectMessage:%d: WARNING... trying to

modify a static attribute and providing more than one set

of attribute values.\n");

 }

 dbFeatureClass->attributeHistory = vectorCopy(

msgFeatureClass->attributeHistory,

(void *) featureClassAttributeCopy,

(void *) featureClassAttributeDestroy);

 if(!dbFeatureClass->attributeHistory)

 {

 cError("processModifyVksObjectMessage:%d: Problem cloning the

msgFeatureClass->attributeHistory\n", __LINE__);

 continue;

 }

 }

 else

 {

 // Dynamic Feature Class

 // Add this msgAttribute to dbAttributeHistory

 for(j = 0;

j < msgFeatureClass->attributeHistory->elementCount;

j++)

 {

 // BIG WARNING HERE... You REALLY should only modify with one

// dataset. If we put in duplicate data sets, it could cause

// big problems for some estimator algorithms. (I think)

dbFcAttribute = featureClassAttributeCopy(

(JausWorldModelFeatureClassAttribute)

msgFeatureClass->attributeHistory->elementData[j]);

 if(!dbFcAttribute)

 {

 cError("processModifyVksObjectMessage:%d: Problem cloning

msgFeatureClassAttribute.\n", __LINE__);

 continue;

 }

 vectorAdd(dbFeatureClass->attributeHistory, dbFcAttribute);

 }

 }

 // Allocate memory for sqlQuery

 sqlQuery = (char *) calloc(1, 1024);

163

 sprintf(sqlQuery, "UPDATE %s SET fc_estimator_type=%d,

fc_data_type=%d, attribute=%lld, attribute_timestamp='%s' WHERE

fc_id = %d AND objectid=%d;", fcTableName,

dbFeatureClass->estimator, dbFcAttribute->dataType,

dbFcAttribute->current.unsignedLongValue,

jausTimeToSqlString(dbFcAttribute->timeStamp),dbFeatureClass->id,

dbObject->id);

 queryResult = postgresDbQuery(sqlQuery);

 free(sqlQuery);

 // Now we'll run the FC Predictor and get its hexBuffer

 hexString = featureClassPredictorToHexBuffer(dbFeatureClass);

 if(!hexString)

 {

 cError("processModifyVksObjectMessage:%d: Problem with

featureClassPredictorToHexBuffer!\n", __LINE__);

 vectorObjectDestroy(dbObject);

 modifyVksObjectMessageDestroy(modifyMsg);

 return JAUS_FALSE;

 }

 sqlQuery = (char *) calloc(1, strlen(hexString) + 128);

 sprintf(sqlQuery, "UPDATE %s SET fc_estimator_solution = '%s' WHERE

fc_id=%d AND objectid=%d;", fcTableName, hexString,

dbFeatureClass->id, dbObject->id);

 queryResult = postgresDbQuery(sqlQuery);

 free(hexString);

 free(sqlQuery);

 }

 else

 {

 // There was no match for this feature class

 // So we just clone it and add it to the dbObject

 dbFeatureClass = featureClassCopy(msgFeatureClass);

 if(!dbFeatureClass)

 {

 cError("processModifyVksObjectMessage:%d: Problem cloning

msgFeatureClass.\n", __LINE__);

 continue;

 }

 vectorAdd(dbObject->featureClasses, dbFeatureClass);

 // Since this is a new feature class, we'll add it to the fc table

 sqlQuery = createCreateFeatureClassSql(dbFeatureClass,

dbObject->id);

 queryResult = postgresDbQuery(sqlQuery);

 free(sqlQuery);

 }

 }

 // Now we'll put the byteArray version of dbObject back into the DB

 dataSizeBytes = vectorObjectSizeBytes(dbObject);

 dataBuffer = (char *) malloc(dataSizeBytes);

 if(!vectorObjectToBuffer(dbObject, dataBuffer, dataSizeBytes))

 {

 cError("processModifyVksObjectMessage:%d: Problem packing vector

dbObject to dataBuffer\n", __LINE__);

164

 vectorObjectDestroy(dbObject);

 modifyVksObjectMessageDestroy(modifyMsg);

 return JAUS_FALSE;

 }

 hexString = bufferToHex(dataBuffer, dataSizeBytes);

 // Now let's update that into the DB

 sqlQuery = (char *) malloc(strlen(hexString)+128);

 sprintf(sqlQuery, "UPDATE %s SET vectorObject = '%s' WHERE objectid=%d;",

objectTableName, hexString, dbObject->id);

 queryResult = postgresDbQuery(sqlQuery);

 free(dataBuffer);

 free(hexString);

 free(sqlQuery);

 // Now we need to update the object estimator

 hexString = objectPredictorToHexBuffer(dbObject);

 if(!hexString)

 {

 cError("processModifyVksObjectMessage:%d: Problem with

featureClassPredictorToHexBuffer!\n", __LINE__);

 vectorObjectDestroy(dbObject);

 modifyVksObjectMessageDestroy(modifyMsg);

 return JAUS_FALSE;

 }

 sqlQuery = (char *) malloc(strlen(hexString) + 128);

 sprintf(sqlQuery, "UPDATE %s SET estimator_solution = '%s' WHERE

objectid=%d;", objectTableName, hexString, dbObject->id);

 queryResult = postgresDbQuery(sqlQuery);

 // done with these pointers

 free(hexString);

 free(sqlQuery);

 vectorObjectDestroy(dbObject);

 modifyVksObjectMessageDestroy(modifyMsg);

 modifyCount++;

 return JAUS_TRUE;

}

Query Future State Message

// Process Query Future State

JausBoolean processQueryFutureStateMessage(JausMessage message)

{

 QueryVksObjectFutureStateMessage query;

 ReportVksObjectFutureStateMessage report;

 JausMessage txMessage;

 JausWorldModelVectorObjectSpatialDataSet dataSet;

 JausWorldModelFeatureClass fcClass;

 JausWorldModelFeatureClassAttribute fcAttribute;

165

 JausTime queryTime = NULL;

 JausTime tempTime = NULL;

 int characterCount = 0;

 int queryResult;

 char sqlQuery[1024] = {0};

 char *hexString;

 unsigned int i = 0;

 GenericPredictor xPredictor;

 GenericPredictor yPredictor;

 GenericPredictor fcPredictor;

 PointUtm pointUtm;

 PointLla pointLla;

 // Unpack Query

 query = queryVksObjectFutureStateMessageFromJausMessage(message);

 if(!query)

 {

 cError("processQueryFutureStateMessage:%d: Problem unpacking query

message\n", __LINE__);

 return JAUS_FALSE;

 }

 // First, let's ask the database for the object

 sprintf(sqlQuery, "SELECT object_type, estimator_solution,

utm_init_longitude FROM %s WHERE objectid=%d;", objectTableName,

query->objectId);

 queryResult = postgresDbQuery(sqlQuery);

 // Check the results for errors

 if(queryResult != 0 || postgresDbGetResultCount() == 0)

 {

 cError("processQueryFutureStateMessage:%d: Object (id=%d) not found in

dataBase.\n", __LINE__, query->objectId);

 queryVksObjectFutureStateMessageDestroy(query);

 return JAUS_FALSE;

 }

 // Create report, NOTE: This also creates the report->vectorObject

 report = reportVksObjectFutureStateMessageCreate();

 if(!report)

 {

 cError("processQueryFutureStateMessage:%d: Problem creating report

message\n", __LINE__);

 queryVksObjectFutureStateMessageDestroy(query);

 return JAUS_FALSE;

 }

 report->requestId = query->requestId;

 // We're going to need one of these, might as well make it now

 dataSet = vectorObjectDataSetCreate();

 if(!dataSet)

 {

 cError("processQueryFutureStateMessage:%d: Error creating dataSet.\n",

166

__LINE__);

 queryVksObjectFutureStateMessageDestroy(query);

 reportVksObjectFutureStateMessageDestroy(report);

 return JAUS_FALSE;

 }

 vectorAdd(report->vectorObject->geospatialData, dataSet);

 // Let's setup the basic reportObjectPresenceVector

 jausShortPresenceVectorSetBit(&report->vectorObject->presenceVector,

JAUS_WM_OBJECT_PV_OBJECT_ID_BIT);

 jausShortPresenceVectorSetBit(&report->vectorObject->presenceVector,

JAUS_WM_OBJECT_PV_FC_COUNT_BIT);

 jausShortPresenceVectorSetBit(&report->vectorObject->presenceVector,

JAUS_WM_OBJECT_PV_ATTRIBUTE_COUNT_BIT);

 jausShortPresenceVectorSetBit(&report->vectorObject->presenceVector,

JAUS_WM_OBJECT_PV_ATTRIBUTE_TIMESTAMP_BIT);

 jausShortPresenceVectorSetBit(&report->vectorObject->presenceVector,

JAUS_WM_OBJECT_PV_POSITION_COUNT_BIT);

 jausShortPresenceVectorSetBit(&report->vectorObject->presenceVector,

JAUS_WM_OBJECT_PV_POSITION_TIMESTAMP_BIT);

 report->vectorObject->type =

atoi(postgresDbGetResultValueByColumnName(0, "object_type"));

 report->vectorObject->id = query->objectId;

 // Ok, now we get into the future state prediction

 // First, we should setup our query time. This is based on the query type

 if(query->queryType == VKS_FUTURE_STATE_ABSOLUTE_TIME)

 {

 queryTime = jausTimeCopy(query->queryTime);

 if(!queryTime)

 {

 cError("processQueryFutureStateMessage:%d: Error creating

queryTime\n", __LINE__);

 queryVksObjectFutureStateMessageDestroy(query);

 reportVksObjectFutureStateMessageDestroy(report);

 return JAUS_FALSE;

 }

 }

 else if(query->queryType == VKS_FUTURE_STATE_RELATIVE_TIME)

 {

 // We're going to use this JausTime object, so we'll need to create it

 tempTime = jausTimeCreate();

 if(!tempTime)

 {

 cError("processQueryFutureStateMessage:%d: Error creating

queryTime\n");

 queryVksObjectFutureStateMessageDestroy(query);

 reportVksObjectFutureStateMessageDestroy(report);

 return JAUS_FALSE;

 }

 jausTimeSetCurrentTime(tempTime);

 queryTime = jausTimeAddTimeStamp(tempTime, query->queryTime);

 jausTimeDestroy(tempTime);

167

 if(!queryTime)

 {

 cError("processQueryFutureStateMessage:%d: Error creating

queryTime\n", __LINE__);

 queryVksObjectFutureStateMessageDestroy(query);

 reportVksObjectFutureStateMessageDestroy(report);

 return JAUS_FALSE;

 }

 }

 else

 {

 cError("processQueryFutureStateMessage:%d: Unknown query type value!

(type=%d)\n", query->queryType);

 queryVksObjectFutureStateMessageDestroy(query);

 reportVksObjectFutureStateMessageDestroy(report);

 return JAUS_FALSE;

 }

 // We'll retrieve the BYTEA of the object estimator from the result of the

// previous query

 hexString = postgresDbGetResultValueByColumnName(0, "estimator_solution");

 // Take this hexString and shove it! No really, let's do something useful

// with it, like make a couple object predictors

 xPredictor = predictorFromHexBuffer(hexString + characterCount,

&characterCount);

 yPredictor = predictorFromHexBuffer(hexString + characterCount,

&characterCount);

 // ok... we should test these

 if(!xPredictor || !yPredictor)

 {

 cError("processQueryFutureStateMessage:%d: Error creating x and y

predictors.\n", __LINE__);

 jausTimeDestroy(queryTime);

 queryVksObjectFutureStateMessageDestroy(query);

 reportVksObjectFutureStateMessageDestroy(report);

 return JAUS_FALSE;

 }

 // We'll need a spot to put these values

 pointLla = pointLlaCreate();

 if(!pointLla)

 {

 cError("processQueryFutureStateMessage:%d: Error creating pointLla.\n",

__LINE__);

 genericPredictorDestroy(xPredictor);

 genericPredictorDestroy(yPredictor);

 jausTimeDestroy(queryTime);

 queryVksObjectFutureStateMessageDestroy(query);

 reportVksObjectFutureStateMessageDestroy(report);

 return JAUS_FALSE;

 }

 // We'll also need one of these b/c the estimators are done in UTM space

 pointUtm = pointUtmCreate();

168

 if(!pointUtm)

 {

 cError("processQueryFutureStateMessage:%d: Error creating pointUtm.\n",

__LINE__);

 genericPredictorDestroy(xPredictor);

 genericPredictorDestroy(yPredictor);

 jausTimeDestroy(queryTime);

 queryVksObjectFutureStateMessageDestroy(query);

 reportVksObjectFutureStateMessageDestroy(report);

 return JAUS_FALSE;

 }

 // Ok... now THIS is our future estimator right here

 pointUtm->xMeters = genericPredictorEstimate(xPredictor,

jausTimeToSeconds(queryTime));

 pointUtm->yMeters = genericPredictorEstimate(yPredictor,

jausTimeToSeconds(queryTime));

 // We are done with our predictors, and should destroy them

 genericPredictorDestroy(xPredictor);

 genericPredictorDestroy(yPredictor);

 // We need to transform from UTM to LLA to put this in the message

 // Since we don't know what UTM zone this object was in, we can ask the

 // DB for the utm_init_longitude and initialize utmLib with that

 pointLla->longitudeRadians =

atof(postgresDbGetResultValueByColumnName(0, "utm_init_longitude"));

 // Now we'll call utmInit with that point

 utmConversionInit(pointLla);

 // We're done with this, so we'll get rid of it

 pointLlaDestroy(pointLla);

 // OK... now we're free (and safe!) to use utmLib to do the reprojection

 pointLla = pointUtmToPointLla(pointUtm);

 if(!pointLla)

 {

 cError("processQueryFutureStateMessage:%d: Error creating pointLla.\n",

__LINE__);

 jausTimeDestroy(queryTime);

 queryVksObjectFutureStateMessageDestroy(query);

 reportVksObjectFutureStateMessageDestroy(report);

 return JAUS_FALSE;

 }

 // Lastly, we'll add our estimate to the reportObject

 vectorAdd(dataSet->dataPoints, pointLla);

 // One last thing to do is go ahead and put the

// objectTime stamp in the message

 jausTimeDestroy(dataSet->timeStamp);

 dataSet->timeStamp = jausTimeCopy(queryTime);

 // done with our UTM point, let's destroy it

 pointUtmDestroy(pointUtm);

169

 // GREAT! Now we have done the object estimate... we have to do the

// feature class estimates. Luckily, they are easier (I think)

 for(i = 0; i < query->featureClassCount; i++)

 {

 // First, we'll ask the DB if this object & fcId exists

 // We're only going to need the fc_estimator_solution for each result

// (which should only be 1!)

// NOTE: We'll use our "snapshot" view here. This allows us easy access

// to the JOIN of objectTable and fcTable

 sprintf(sqlQuery, "SELECT fc_id, fc_data_type, fc_estimator_solution

FROM snapshot WHERE objectid=%d AND fc_id=%d;", query->objectId,

query->featureClassIds[i]);

 queryResult = postgresDbQuery(sqlQuery);

 // Test the results

// REALLY only should be 1 result

 if(queryResult != 0 || postgresDbGetResultCount() != 1)

{

 cError("processQueryFutureStateMessage:%d: FeatureClass (id=%d) for

object (id=%d) not found in dataBase.\n", __LINE__,

query->featureClassIds[0], query->objectId);

 continue;

 }

 // Great. Now we need to add a featureClass to our object

 fcClass = featureClassCreate();

 if(!fcClass)

 {

 cError("processQueryFutureStateMessage:%d: FeatureClass

constructor.\n", __LINE__);

 continue;

 }

 fcAttribute = featureClassAttributeCreate();

 if(!fcAttribute)

 {

 cError("processQueryFutureStateMessage:%d: FeatureClass

constructor.\n", __LINE__);

 featureClassDestroy(fcClass);

 continue;

 }

 // Stick some basic fc info in here

 fcClass->id = atoi(postgresDbGetResultValueByColumnName(0, "fc_id"));

 fcAttribute->dataType =

atoi(postgresDbGetResultValueByColumnName(0, "fc_data_type"));

 // Ok.... now we have to get our estimator and run it

 // get the fc_estimator_sol from our db results

 hexString =

postgresDbGetResultValueByColumnName(0, "fc_estimator_solution");

 characterCount = 0;

 // Take this hexString and ... do something useful with it, like make a

// fc predictor

 fcPredictor =

170

predictorFromHexBuffer(hexString+characterCount, &characterCount);

 if(!fcPredictor)

 {

 cError("processQueryFutureStateMessage:%d: FeatureClass predictor

failed.\n", __LINE__);

 continue;

 }

 featureClassAttributeFromDouble(fcAttribute,

genericPredictorEstimate(fcPredictor,

jausTimeToSeconds(queryTime)));

 jausTimeDestroy(fcAttribute->timeStamp);

 fcAttribute->timeStamp = jausTimeCopy(queryTime);

 // Add this featureClass and attribute to report->vectorObject

 vectorAdd(fcClass->attributeHistory, fcAttribute);

 vectorAdd(report->vectorObject->featureClasses, fcClass);

 // We're done with this predictor, so we'll get rid of it

 genericPredictorDestroy(fcPredictor);

 }

 // Send the report

 txMessage = reportVksObjectFutureStateMessageToJausMessage(report);

 if(txMessage)

 {

 if(query->scFlag == JAUS_SERVICE_CONNECTION_MESSAGE)

 {

 // Service Connection Query

 txMessage->scFlag = JAUS_SERVICE_CONNECTION_MESSAGE;

 txMessage->sequenceNumber = message->sequenceNumber;

 }

 else

 {

 // Non SC Query

 txMessage->scFlag = JAUS_NOT_SERVICE_CONNECTION_MESSAGE;

 txMessage->sequenceNumber = 0;

 }

 txMessage->source->id = wmvks->address->id;

 txMessage->destination->id = query->source->id;

 nodeManagerSend(wmvksNmi, txMessage);

 jausAddressToString(txMessage->destination, sqlQuery);

 jausMessageDestroy(txMessage);

 }

 // Clean-up

 jausTimeDestroy(queryTime);

 reportVksObjectFutureStateMessageDestroy(report);

 queryVksObjectFutureStateMessageDestroy(query);

 return JAUS_TRUE;

}

171

Prediction Algorithm Solver Functions

The following is the solver functions for the polynomial and linear predictors. These are

included to show the details of the SNOPP implementation and how GSL is used.

Linear Predictor

// Linear Predictor Solver Function

int linearEstimatorSolver(GenericPredictor linearEst)

{

 // Solution in the form Y = beta0 + beta1 * X

 unsigned int i = 0;

 unsigned int startIndex = 0;

 double *xArray = NULL;

 double *yArray = NULL;

 LinearEstimatorSolution sol = NULL;

 // Solve the problem using the LinearEstimator algorithm

 if(!linearEst)

 {

 cError("linearEstimator:%d: Pointer is NULL.\n", __LINE__);

 return CIMAR_FALSE;

 }

 if(!linearEst->dataArray)

 {

 cError("linearEstimator:%d: Cannot solve because linearEst->dataArray

is NULL.\n", __LINE__);

 return CIMAR_FALSE;

 }

 sol = (LinearEstimatorSolution) linearEst->solutionStruct;

 if(linearEst->dataSize < sol->confMinimumPointCount)

 {

 cError("linearEstimator:%d: Cannot solve because linearEst->dataSize <=

sol->confMinimumPointCount (%d < %d).\n", __LINE__,

linearEst->dataSize, sol->confMinimumPointCount);

 return CIMAR_FALSE;

 }

 if(linearEst->dataSize > sol->confMaximumPointCount)

 {

 startIndex = linearEst->dataSize - sol->confMaximumPointCount;

 linearEst->dataSize = sol->confMaximumPointCount;

 }

 // Allocate memory for the x array

 xArray = (double *) calloc(linearEst->dataSize, sizeof(double));

 if(!xArray)

172

 {

 cError("linearEstimator:%d: Cannot solve because error allocating

memory for xArray.\n", __LINE__);

 return CIMAR_FALSE;

 }

 // Allocate memory for the y array

 yArray = (double *) calloc(linearEst->dataSize, sizeof(double));

 if(!yArray)

 {

 cError("linearEstimator:%d: Cannot solve because error allocating

memory for yArray.\n", __LINE__);

 free(xArray);

 return CIMAR_FALSE;

 }

 // Setup StartX

 sol->startX = linearEst->dataArray[startIndex].x;

 // Setup the xArray & yArray

 for(i = 0; i < linearEst->dataSize; i++)

 {

 xArray[i] = linearEst->dataArray[startIndex + i].x - sol->startX;

 yArray[i] = linearEst->dataArray[startIndex + i].y;

 }

 gsl_fit_linear(xArray, 1, yArray, 1, linearEst->dataSize, &sol->beta0,

&sol->beta1, &sol->cov00, &sol->cov01, &sol->cov11, &sol->chiSq);

 free(yArray);

 free(xArray);

 return CIMAR_TRUE;

}

Polynomial Predictor

// Polynomial Predictor Solver Function

int polyEstimatorSolver(GenericPredictor polyEst)

{

 int i = 0, j = 0, k = 0;

 double yMean = 0;

 // Need storage for interim solutions

 // power values from interim solutions of size confWindowCount

 int *solPower = NULL;

 double *solBeta = NULL;

 // Interim Solution Data

 DataPoint *tempData = NULL; // subset of dataArray for interim solutions

 int tempDataSize = 0;

 // Solution parameters

 double *pValue; // need one of these for each confMaximumOrder

 double *tempBeta; // need confMaximumOrder+1

173

 double *typeOneSSModel; // need confMaximumOrder+1

 double ssError;

 double msError;

 double yEstimate = 0;

 PolyEstimatorSolution sol = NULL;

 sol = (PolyEstimatorSolution) polyEst->solutionStruct;

 // Solve the problem using the PolyEstimator algorithm

 if(!polyEst)

 {

 cError("polyEstimator:%d: Pointer is NULL.\n", __LINE__);

 return -1;

 }

 if(!polyEst->dataArray)

 {

 cError("polyEstimator:%d: Cannot solve because polyEst->dataArray is

NULL.\n", __LINE__);

 return -1;

 }

 if(polyEst->dataSize < sol->confMinimumPointCount)

 {

 cError("polyEstimator:%d: Cannot solve because polyEst->dataSize <

sol->confMinimumPointCount (%ld < %d).\n", __LINE__,

polyEst->dataSize, sol->confMinimumPointCount);

 return -1;

 }

 // Allocate memory for solPower

 solPower = (int *) calloc(sol->confWindowCount, sizeof(int));

 if(!solPower)

 {

 cError("polyEstimator:%d: Problem allocating memory for solPower.\n",

__LINE__);

 return -1;

 }

 // Allocate memory for solBeta

// This is [confWindowCount][confMaximumOrder+1]

 solBeta = (double *) calloc((sol->confWindowCount *

(sol->confMaximumOrder+1)), sizeof(double));

 if(!solBeta)

 {

 free(solPower);

 cError("polyEstimator:%d: Problem allocating memory for solBeta.\n",

__LINE__);

 return -1;

 }

 pValue = (double *) calloc(sol->confMaximumOrder+1, sizeof(double));

 if(!pValue)

 {

 free(solBeta);

 free(solPower);

174

 cError("polyEstimator:%d: Problem allocating memory for pValue.\n",

__LINE__);

 return -1;

 }

 tempBeta = (double *) calloc(sol->confMaximumOrder+1, sizeof(double));

 if(!tempBeta)

 {

 free(pValue);

 free(solBeta);

 free(solPower);

 cError("polyEstimator:%d: Problem allocating memory for tempBeta.\n",

__LINE__);

 return -1;

 }

 typeOneSSModel =

(double *) calloc(sol->confMaximumOrder+1, sizeof(double));

 if(!typeOneSSModel)

 {

 free(tempBeta);

 free(pValue);

 free(solBeta);

 free(solPower);

 cError("polyEstimator:%d: Problem allocating memory for

typeOneSSModel.\n", __LINE__);

 return -1;

 }

 // Ok... now we can solve this problem

 // First, let go through the data and collect some statistics

 // Calculate deltaXMean

 sol->deltaXMean = 0;

 for(i = 1; i < polyEst->dataSize; i++)

 {

 sol->deltaXMean += polyEst->dataArray[i].x - polyEst->dataArray[i-1].x;

 }

 sol->deltaXMean /= polyEst->dataSize;

 // We need to setup sol->power for this analysis

 sol->power = sol->confMaximumOrder;

 // *********************** NOTE *******************************

 // We need to put a check in here to ensure that confWindowStepSize >

// confMaximumOrder. If that is NOT true, we can still do the analysis,

// but we have to skip X generations of the window until tempData >=

// confMaximumOrder. Really we should NOT analyze less that

// PE_MINIMUM_DATA_FACTOR * confMaximumOrder data in a generation

 i = 0;

 tempDataSize = sol->confWindowStepSize;

 while(tempDataSize < sol->confMaximumOrder * PE_MINIMUM_DATA_FACTOR)

 {

 i++;

 tempDataSize = sol->confWindowStepSize * i;

 }

 // Analysis of windowCount

175

 // NOTE: the i=0 is NOT a bug, it is left out because the loop above sets

// up our i value

 for(; i < sol->confWindowCount; i++)

 {

 // Allocate memory for tempData

 tempDataSize = sol->confWindowStepSize*(i+1);

 // Need to check if tempDataSize > polyEst->dataSize

 // If this is true, we've run out of data!

 // In this case, we'll run the analysis to the end of the data,

// then exit

 if(tempDataSize > polyEst->dataSize)

 {

 tempDataSize = polyEst->dataSize;

 }

 // Check if previously allocated

 if(tempData != NULL) free(tempData);

 // this is equal to i * confWindowStepSize

 tempData = (DataPoint *) malloc(sizeof(DataPoint) * tempDataSize);

 // Copy subset from dataArray

 memcpy(tempData, &polyEst->dataArray[polyEst->dataSize-tempDataSize],

tempDataSize*sizeof(DataPoint));

 // WOO-HOO... let's fit a polynomial

 fitPolynomial(tempData, tempDataSize, sol->confMaximumOrder,

tempData[0].x, &solBeta[i*sol->confMaximumOrder]);

 // Calculate some statistics parameters

 // Note, right now the only ones acutally needed (or used) are ssError

 ssError = 0;

 for(j=0; j < tempDataSize; j++)

 {

 yMean += tempData[j].y;

 yEstimate = estimate(sol->confMaximumOrder,

tempData[j].x-tempData[0].x, &solBeta[i*sol->confMaximumOrder]);

 ssError += pow(tempData[j].y - yEstimate, 2);

 }

 yMean /= tempDataSize;

 // Calculate the msError for F-Test statistic

 msError = ssError / (tempDataSize - (sol->confMaximumOrder+1));

 // Now its gets complicated

 // we need to fit a polynomial of each order 1, 2, 3...

// confMaximumOrder

 for(j = 1; j <= sol->confMaximumOrder; j++)

 {

 // fit a polynomial to the dataset with a power of j

 // put the results in tempBeta

 fitPolynomial(tempData, tempDataSize, j, tempData[0].x, tempBeta);

 // take our newly fit lower-order polynomial and collect some data

 typeOneSSModel[j] = 0;

 for(k = 0; k < tempDataSize; k++)

176

 {

 yEstimate = estimate(j, tempData[k].x-tempData[0].x, tempBeta);

 typeOneSSModel[j] += pow(yEstimate - yMean, 2);

 }

 // Type I SS

 // typeOneSSModel[j] - typeOneSSModel[j-1]

 // F-Statistic

 // typeOneSumSquares[j] / msError

 // P Critical Value from F-Test(df1=1, df2=n-(k+1))

 pValue[j] = gsl_cdf_fdist_Q((typeOneSSModel[j] –

typeOneSSModel[j-1])/msError, 1,

(tempDataSize-(sol->confMaximumOrder+1)));

 }

 // Now we have to analyze these p-values and find the proper order

// this is the minimum order we are analyzing

 j = sol->confMinimumOrder;

 while(j < sol->confMaximumOrder && pValue[j+1] <

sol->confPCriticalValue) j++;

 solPower[i] = j;

 // Usually we would draw conclusions once all the solutions are known

 // But we want the lowest order with the most history (in case of a tie

// for order). Since the history is increasing and order is being

// minimized, we can actually do this during evaluation

 // The current solution has an order less (or equal),

// therefore it is better

 if(solPower[i] <= sol->power)

 {

 sol->power = solPower[i];

 sol->historySize = tempDataSize;

 sol->startX = tempData[0].x;

 // We solve the final polynomial for this dataset

// with the proper power

 fitPolynomial(tempData, tempDataSize, sol->power,

tempData[0].x, sol->beta);

 }

 // This is a special check for tempDataSize == polyEst->dataSize

 // This was a sign that we were at the end of the data and need to

// exit, like now

 if(tempDataSize == polyEst->dataSize)

 {

 break;

 }

 }

 // Free Memory

 free(tempData);

 free(typeOneSSModel);

 free(tempBeta);

 free(pValue);

177

 free(solBeta);

 free(solPower);

 return 0;

}

// Polynomial Least-Squares Fit

int fitPolynomial(DataPoint *data, int dataSize, int power, double xOffset,

double *coefficients)

{

 int i, j;

 double chisq = 0.0;

 gsl_matrix *xMatrix = NULL;

 gsl_matrix *covarianceMatrix = NULL;

 gsl_vector *yVector = NULL;

 gsl_vector *solutionVector = NULL;

 gsl_multifit_linear_workspace *workspace = NULL;

 // power + 1 because of constant parameter

 power++;

 // Create an xMatrix of size (dataSize x power)

 xMatrix = gsl_matrix_alloc(dataSize, power);

 // Create the yVector of size (dataSize)

 yVector = gsl_vector_alloc(dataSize);

 // Allocate the solution vector

 solutionVector = gsl_vector_alloc(power);

 // covariance matrix allocation

 covarianceMatrix = gsl_matrix_alloc(power, power);

 // Allocate workspace

 workspace = gsl_multifit_linear_alloc(dataSize, power);

 // Populate the xMatrix and yVector

 for(i = 0; i < dataSize; i++)

 {

 for(j = 0; j < power; j++)

 {

 gsl_matrix_set(xMatrix, i, j, pow(data[i].x-xOffset, j));

 }

 gsl_vector_set(yVector, i, data[i].y);

 }

 // Least-Squares Fit of data

 gsl_multifit_linear(xMatrix, yVector, solutionVector, covarianceMatrix,

&chisq, workspace);

 for(i = 0; i < power; i++)

 {

 coefficients[i] = gsl_vector_get(solutionVector,i);

 }

178

 // Free allocated resources

 gsl_matrix_free(xMatrix);

 gsl_matrix_free(covarianceMatrix);

 gsl_vector_free(yVector);

 gsl_vector_free(solutionVector);

 gsl_multifit_linear_free(workspace);

 return --power;

}

179

APPENDIX C
NUMERIC EXAMPLE

The purpose of this appendix is to present a numeric example of the Statistics-Based Nth

Order Polynomial Predictor (SNOPP) which was presented in Chapter 3. Of the purposes of this

example, a known 3rd order polynomial will be used to generate a series of data. A random

quantity of error is added to these data points to better represent real world data. The resulting

dataset is then evaluated and the resulting polynomial is determined using the SNOPP algorithm.

The following 3rd order polynomial was used to generate the sample dataset:

This was used to generate a dataset with 40 values which are shown

in Table C-1. The SNOPP algorithm first looks to fit a high-order polynomial to the dataset. For

this example a 5th order polynomial was used. The least-squares method was applied as outlined

in chapter 3 (Equation 3-7) and the polynomial solution yielded was

 The SNOPP

algorithm now investigates each of the values to see if they are statistically significant to the

dataset.

To do so, a polynomial of each order up to the 5th order must be calculated using the same

least-squares method. This yields a collection of polynomials which can be sequentially tested in

a Type I Sum of Squares method. The F-Statistic for each is calculated as shown in Equation

3-8. First the Mean Squared Error (MSE) of the dataset is calculated using Equation 3-9 as

follows:

180

Next, the SSModel term is calculated for each using equation 3-10. The solution for

is shown. The others are done similarly and are listed in table C-2. Note that the term was

found previously by fitting a polynomial to the dataset with a maximum order of 4.

Finally, the F-Value for each order can be calculated using Equation 3-8. The example below is

for the 4th order test. Others are similar and results are included in Table C-2.

Finally, the P-Critical values are analyzed. Here, the 4th order and higher terms are rejected

because they have a P-Critical value above the 0.2 threshold which indicates a greater than 20%

chance that those terms are not statistically significant. This indicates the true solution is 3rd

order. Therefore the 3rd order polynomial fitted previously is said to be the proper solution. Here

the solution is This is

181

reasonably close to the original polynomial used to generate the data which was

182

Table C-1 Dataset used in numeric example
n X Value Y Value Y Value with Error Error
1 0 626 626.527643 -0.527643
2 0.2 626.22064 626.641172 -0.420532
3 0.4 626.56912 625.787754 0.781366
4 0.6 627.07328 628.071084 -0.997804
5 0.8 627.76096 627.510589 0.250371
6 1 628.66 627.010799 1.649201
7 1.2 629.79824 629.510619 0.287621
8 1.4 631.20352 630.902289 0.301231
9 1.6 632.90368 631.187051 1.716629

10 1.8 634.92656 634.287322 0.639238
11 2 637.3 638.266131 -0.966131
12 2.2 640.05184 641.14496 -1.09312
13 2.4 643.20992 643.671636 -0.461716
14 2.6 646.80208 645.279907 1.522173
15 2.8 650.85616 652.397536 -1.541376
16 3 655.4 655.518128 -0.118128
17 3.2 660.46144 660.469276 -0.007836
18 3.4 666.06832 665.11101 0.95731
19 3.6 672.24848 671.784873 0.463607
20 3.8 679.02976 678.361989 0.667771
21 4 686.44 686.564124 -0.124124
22 4.2 694.50704 696.33044 -1.8234
23 4.4 703.25872 701.383478 1.875242
24 4.6 712.72288 712.838421 -0.115541
25 4.8 722.92736 723.331611 -0.404251
26 5 733.9 734.933894 -1.033894
27 5.2 745.66864 745.143632 0.525008
28 5.4 758.26112 756.637866 1.623254
29 5.6 771.70528 771.254488 0.450792
30 5.8 786.02896 784.966236 1.062724
31 6 801.26 802.414973 -1.154973
32 6.2 817.42624 815.503091 1.923149
33 6.4 834.55552 835.913328 -1.357808
34 6.6 852.67568 851.049287 1.626393
35 6.8 871.81456 872.889215 -1.074655
36 7 892 891.107437 0.892563
37 7.2 913.25984 911.984246 1.275594
38 7.4 935.62192 934.408955 1.212965
39 7.6 959.11408 959.920287 -0.806207
40 7.8 983.76416 982.771937 0.992223

183

Table C-2 Statistical Values from numeric example
Order SSModel F-Value P-Critical Value
1 385980.150741 319128.952406 < 0.0001
2 444363.750019 48271.645160 < 0.0001
3 445587.652161 1011.924079 < 0.0001
4 445588.491338 0.693833 0.410677
5 445589.206968 0.591684 0.447080

184

LIST OF REFERENCES

[1] JAUS, "Reference Architecture Specification ver. 3.2," JAUS Working Group, 2004.

[2] N. Nilsson, "Shakey the Robot," in Technical Note 325 Menlo Park, CA: SRI
International, 1984.

[3] J. Leonard and H. Durrant-Whyte, "Simultaneous map building and localization for an
autonomous mobile robot," in IEEE/RSJ International Workshop on Intelligent Robots

and Systems, 1991, pp. 1442-1447.

[4] C. Wang and C. Thorpe, "Simultaneous Localization and Mapping with Detection and
Tracking of Moving Objects," in IEEE International Conference on Robotics &

Automation, 2002.

[5] M. Montemerlo, S. Thrun, and W. Whittaker, "Conditional Particle Filters for
Simultaneous Mobile Robot Localization and People-Tracking," in IEEE International

Conference on Robotics & Automation (ICRA), 2002.

[6] D. Hahnel, D. Schulz, and W. Burgard, "Map Building with Mobile Robots in Populated
Environments," in IEEE/RSJ International Conference on Intelligent Robots and Systems,
2002.

[7] D. Hahnel, R. Triebel, W. Burgard, and S. Thrun, "Map Building with Mobile Robots in
Dynamic Environments," in IEEE International Conference on Robotics and Automation,
2003.

[8] D. Vasquez, F. Large, T. Fraichard, and C. Laugier, "Moving Obstacles’ Motion

Prediction for Autonomous Navigation," in 8th International Conference on Control,

Automation, Robotics and Vision, Kunming, China, 2004.

[9] A. Stentz, "Optimal and Efficient Path Planning for Partially-Known Environments," in

IEEE International Conference on Robotics and Automation, 1994, pp. 3310--3317.

[10] P. Fiorini and Z. Shiller, "Motion Planning in Dynamic Environments Using Velocity
Obstacles," International Journal of Robotics Research, vol. 17, 1998.

[11] F. Large, S. Sekhavat, Z. Shiller, and C. Laugier, "Towards Real-Time Global Motion
Planning in a Dynamic Environment Using the NLVO Concept," in IEEE International

Conference on Intelligent Robots and Systems, 2002.

[12] S. Petti and T. Fraichard, "Safe Motion Planning in Dynamic Environments," in
International Conference on Intelligent Robots and Systems, 2005.

185

[13] J. Berg, D. Ferguson, and J. Kuffner, "Anytime Path Planning and Replanning in
Dynamic Environments," in IEEE International Conference on Robotics and Automation,
2006.

[14] K. Belghith, F. Kabanza, L. Hartman, and R. Nkambou, "Anytime Dynamic Path-
Planning with Flexible Probabilistic Roadmaps," in IEEE International Conference on

Robotics and Automation, 2006.

[15] J. Albus, "4D/RCS: A Reference Model Architecture for Intelligent Unmanned Ground
Vehicles," in SPIE 16th Annual International Symposium on Aerospace/Defense Sensing,

Simulation and Controls, 2002.

[16] C. Schlenoff, R. Madhavan, and T. Barbera, "A Hierarchical, Multi-Resolutional Moving
Object Prediction Approach for Autonomous On-Road Driving," in IEEE International

Conference on Robotics and Automation, 2004.

[17] C. Schlenoff, R. Madhavan, and Z. Kootbally, "PRIDE: A Hierarchical, Integrated
Prediction Framework for Autonomous On-Road Driving," in IEEE International

Conference on Robotics and Automation, 2006.

[18] I. Dagli, M. Brost, and G. Breuel, "Action Recognition And Orediction for Driver
Assistance Systems Using Dynamic Belief Networks," in Conference on Agent

Technologies, Infrastructures, Tools, and Applications for E-Services, 2002, pp. 179-194.

[19] I. Dagli and D. Reichardt, "Motivation-Based Approach To Behavior Prediction," in
IEEE Intelligent Vehicle Symposium, 2002.

[20] J. Franke, B. Satterfield, M. Czajkowski, and S. Jameson, "Self-Awareness for Vehicle
Safety and Mission Success," in Unmanned Vehicle System Technology, 2002.

[21] T. Bandyopadhyay, Y. Li, M. Ang., and D. Hsu, "A Greedy Strategy for Tracking a
Locally Predictable Target among Obstacles," in IEEE International Conference on

Robotics and Automation, 2006.

[22] F. Large, D. Vasquez, T. Fkaichard, and C. Laugier, "Avoiding Cars and Pedestrians
Using Velocity Obstacles and Motion Prediction," in IEEE Intelligent Vehicles

Symposium, 2004.

[23] Y. Sheng and Y. Wu, "Motion Prediction in a high-speed, dynamic environment," in
IEEE International Conference on Tools with Artificial Intelligence, 2005.

[24] C. Wong, B. Lin, and C. Cheng, "Fuzzy Tracking Method with a Switching Grey
Prediction for Mobile Robot," in IEEE International Conference on Fuzzy Systems, 2001.

[25] A. Elnagar and A. Hussein, "An Adaptive Motion Prediction Model for Trajectory
Planner Systems," in IEEE International Conference on Robotics &Automation, 2003.

186

[26] E. Bevilacqua and T. Kimura, "Obstacle Movement Prediction considering Obstacle’s

Dynamics and a Priori Knowledge of its Goals," in IEEE International Conference on

Industrial Technology, 2002.

[27] A. Foka and P. Trahanias, "Predictive Autonomous Robot Navigation," in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2002.

[28] P. Rigaux, M. Scholl, and A. Voisard, Spatial Databases: With Application to GIS. San
Francisco: Morgan Kaufmann Publishers, 2002.

[29] OpenGIS Consortium, "OpenGIS Simple Features Specification for SQL," in OpenGIS

Project Document 99-049: OpenGIS Project Document 99-049, 1999.

[30] R. Güting and M. Schneider, Moving objects databases. Amsterdam Boston: Morgan
Kaufmann, 2005.

[31] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang, "Moving Objects Databases: Issues
and Solutions," in 10th International Conference on Scientific and Statistical Database

Management, 1998.

[32] O. Wolfson, L. Jiang, A. Sistla, S. Chamberlain, N. Rishe, and M. Deng, "Databases for
Tracking Mobile Units in Real Time," in International Conference on Database Theory,
1999.

[33] O. Wolfson, H. Cao, H. Lin, G. Trajcevski, F. Zhang, and N. Rishe, "Management of
Dynamic Location Information in DOMINO," in 8th International Conference on

Extending Database Technology: Advances in Database Technology, 2002.

[34] A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao, "Modeling and Querying Moving
Objects," in IEEE Conference on Data Engineering, 1997.

[35] A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao, "Querying the Uncertain Position of
Moving Objects," Lecture Notes in Computer Science, vol. 1399, pp. 310-317, 1998.

[36] G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain, "Managing uncertainty in
moving objects databases," ACM Trans. Database Syst., vol. 29, pp. 463-507, 2004.

[37] A. Meystel and J. Albus, Intelligent Systems: Architecture, Design, and Control. New
York: Wiley, 2002.

[38] JAUS, "World Model Knowledge Store Components ver. 1.5.1," JAUS Working Group,
2005.

[39] Oracle, "Oracle Spatial User’s Guide and Reference, 10g Release 2 (10.2)," 2005.

[40] MapInfo Corporation, "SpatialWare for SQL Server v4.8 User Guide," 2004.

[41] ESRI, "ArcSDE: Advanced Spatial Data Server," 2006.

187

[42] IBM, "IBM Informix Spatial DataBlade Module User’s Guide Version 8.20," 2002.

[43] Refractions Research, "PostGIS Manual v. 1.1.2," 2006.

[44] MySQL, "MySQL 5.1 Reference Manual," 2006.

[45] IBM, "IBM DB2 Spatial Extender and Geodetic Extender User’s Guide and Reference,

Version 8.2," 2004.

[46] Safe Software, "Feature Manipulation Engine (FME) Readers and Writers," 2005.

[47] OpenGIS Consortium, "Registered Products," 2006.

[48] Refractions Research, "Geometry Engine Open Source," 2006.

[49] GNU, "GNU Science Library," 2007.

[50] B. Touchton, T. Galluzzo, D. Kent, and C. Crane, "Perception and Planning Architecture
for Autonomous Ground Vehicles," in Computer. vol. 39, December 2006, pp. 40-47.

188

BIOGRAPHICAL SKETCH

Daniel A. Kent was born on September 20, 1979 in Winter Park, Florida. He was raised in

Winter Springs, Florida and graduated from Lyman High School in 1998. He received a B.S. in

Aerospace Engineering from Embry-Riddle Aeronautical University in Daytona Beach, Florida

in 2002. Mr. Kent is currently a Graduate Research Assistant at the Center for Intelligent

Machines and Robotics (CIMAR) at the University of Florida. He is an active member of the

Joint Architecture for Unmanned Systems (JAUS) Working Group and the Society of

Automotive Engineers (SAE) AS-4 committee, both of which are working to establish a standard

focused on the interoperability of robotic systems. He was also a member of Team CIMAR, a

participant in the 2004 and 2005 DARPA Grand Challenge competitions, in which the

NaviGATOR autonomous ground vehicle placed 8th in the 2004 event and 18th in 2005. After

graduation, Mr. Kent will continue his career as an engineer working on unmanned robotic

vehicles at Defense Technologies Inc. in Gastonia, NC.

